Research Article
BibTex RIS Cite

An inverse source Cauchy-weighted time-fractional diffusion problem

Year 2024, , 1354 - 1367, 15.10.2024
https://doi.org/10.15672/hujms.1230169

Abstract

In the present paper, we are concerned with an inverse source Cauchy weighted problem involving a one-dimensional diffusion equation with a time-fractional Riemann-Liouville derivative with $0<\alpha <1$. We start with results on the existence and regularity of the weak solution of the direct problem. Then, we investigate the invertibility of the input-output mapping defined by the additional over-determination integral data in order to the determination of the unknown time-dependent source coefficient.

Supporting Institution

LMA, Laboratory of applied mathemtics

References

  • [1] J. Cheng, J. Nakagawa, M. Yamamoto and T. Yamazaki, Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation, Inv. Problems, 25, 2009.
  • [2] A. Demir, F. Kanca and E. Ozbilge,Numerical solution and distinguishability in time fractional parabolic equation, Bound. Value Probl. 142, 2015.
  • [3] R. Faizi and R. Atmania, An inverse source problem of a semilinear time-fractional reaction-diffusion equation, Applicable Analysis, 102 (11), 2939-2959, 2022.
  • [4] R. Gorenflo, F. Mainardi, D. Moretti and P. Paradisi,Time fractional diffusion: a discrete random walk approach, Nonlinear Dynamics, 29, 129-143, 2002.
  • [5] A. Hasanov, A. Demir and A. Erdem,Monotonicity of input–output mappings in inverse coefficient and source problems for parabolic equations, J. Math. Anal. Appl. 335, 1434-1451, 2007.
  • [6] N. Heymans and I. Podlubny,Physical nterpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivative, Rheologica Acta, 45, 765-771, 2006.
  • [7] R. Hilfer,Application of fractional in physics, World scientific publishing company, Singapore, 2000.
  • [8] B. Kaltenbacher and W. Rundell, On an inverse potential problem for a fractional reaction–diffusion equation, Inv. Problems, 35, 2019.
  • [9] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo,Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
  • [10] A. A. Kilbas, J. J. Trujillo and A. A. Voroshilov,Cauchy type problem for diffusionwave equations with the Riemann-Liouville derivative, Fract. Cal. and Appl. Anal. 8 (4), 403-430, 2005.
  • [11] Z. Li, Y. Liu and M. Yamamoto,Initial-boundary value problems for multi-term timefractional diffusion equations with positive constant coefficients, Appl. Math. and Comput. 257, 381-397, 2015.
  • [12] Yu. Luchko,Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation, Comput. Math. Appl. 59, 1766-1772, 2010.
  • [13] A. Sa’idu and H. Koyunbakan,Inverse fractional Sturm-Liouville problem with eigenparameter in the boundary conditions, Math. Meth. in the Appl. Sc. 45 (17), 11003- 11012, 2022.
  • [14] K. Sakamoto and M. Yamamoto, Inverse source problem with a final overdetermination for a fractional diffusion equation, Math. Contr. and related fields, 1 (4), 509-518, 2011.
  • [15] S. G. Samko, A. A. Kilbas and D. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, 1993.
  • [16] L. Settara and R. Atmania,An inverse coefficient-source problem for a time-fractional diffusion equation, Int. J. of Appl. Math. and Stat. 57 (3), 68-78, 2018.
  • [17] S. Umarov, On fractional Duhamels principle and its applications, J. D. Equations, 252, 5217-5234, 2012.
  • [18] S. Wang, M. Zhang and X. Li, Radial anomalous diffusion in an annulus, Physica A, 390, 3397-3403, 2011.
Year 2024, , 1354 - 1367, 15.10.2024
https://doi.org/10.15672/hujms.1230169

Abstract

References

  • [1] J. Cheng, J. Nakagawa, M. Yamamoto and T. Yamazaki, Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation, Inv. Problems, 25, 2009.
  • [2] A. Demir, F. Kanca and E. Ozbilge,Numerical solution and distinguishability in time fractional parabolic equation, Bound. Value Probl. 142, 2015.
  • [3] R. Faizi and R. Atmania, An inverse source problem of a semilinear time-fractional reaction-diffusion equation, Applicable Analysis, 102 (11), 2939-2959, 2022.
  • [4] R. Gorenflo, F. Mainardi, D. Moretti and P. Paradisi,Time fractional diffusion: a discrete random walk approach, Nonlinear Dynamics, 29, 129-143, 2002.
  • [5] A. Hasanov, A. Demir and A. Erdem,Monotonicity of input–output mappings in inverse coefficient and source problems for parabolic equations, J. Math. Anal. Appl. 335, 1434-1451, 2007.
  • [6] N. Heymans and I. Podlubny,Physical nterpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivative, Rheologica Acta, 45, 765-771, 2006.
  • [7] R. Hilfer,Application of fractional in physics, World scientific publishing company, Singapore, 2000.
  • [8] B. Kaltenbacher and W. Rundell, On an inverse potential problem for a fractional reaction–diffusion equation, Inv. Problems, 35, 2019.
  • [9] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo,Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
  • [10] A. A. Kilbas, J. J. Trujillo and A. A. Voroshilov,Cauchy type problem for diffusionwave equations with the Riemann-Liouville derivative, Fract. Cal. and Appl. Anal. 8 (4), 403-430, 2005.
  • [11] Z. Li, Y. Liu and M. Yamamoto,Initial-boundary value problems for multi-term timefractional diffusion equations with positive constant coefficients, Appl. Math. and Comput. 257, 381-397, 2015.
  • [12] Yu. Luchko,Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation, Comput. Math. Appl. 59, 1766-1772, 2010.
  • [13] A. Sa’idu and H. Koyunbakan,Inverse fractional Sturm-Liouville problem with eigenparameter in the boundary conditions, Math. Meth. in the Appl. Sc. 45 (17), 11003- 11012, 2022.
  • [14] K. Sakamoto and M. Yamamoto, Inverse source problem with a final overdetermination for a fractional diffusion equation, Math. Contr. and related fields, 1 (4), 509-518, 2011.
  • [15] S. G. Samko, A. A. Kilbas and D. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, 1993.
  • [16] L. Settara and R. Atmania,An inverse coefficient-source problem for a time-fractional diffusion equation, Int. J. of Appl. Math. and Stat. 57 (3), 68-78, 2018.
  • [17] S. Umarov, On fractional Duhamels principle and its applications, J. D. Equations, 252, 5217-5234, 2012.
  • [18] S. Wang, M. Zhang and X. Li, Radial anomalous diffusion in an annulus, Physica A, 390, 3397-3403, 2011.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Rahima Atmania 0000-0001-5377-2782

Loubna Settara 0000-0001-5205-3903

Early Pub Date January 10, 2024
Publication Date October 15, 2024
Published in Issue Year 2024

Cite

APA Atmania, R., & Settara, L. (2024). An inverse source Cauchy-weighted time-fractional diffusion problem. Hacettepe Journal of Mathematics and Statistics, 53(5), 1354-1367. https://doi.org/10.15672/hujms.1230169
AMA Atmania R, Settara L. An inverse source Cauchy-weighted time-fractional diffusion problem. Hacettepe Journal of Mathematics and Statistics. October 2024;53(5):1354-1367. doi:10.15672/hujms.1230169
Chicago Atmania, Rahima, and Loubna Settara. “An Inverse Source Cauchy-Weighted Time-Fractional Diffusion Problem”. Hacettepe Journal of Mathematics and Statistics 53, no. 5 (October 2024): 1354-67. https://doi.org/10.15672/hujms.1230169.
EndNote Atmania R, Settara L (October 1, 2024) An inverse source Cauchy-weighted time-fractional diffusion problem. Hacettepe Journal of Mathematics and Statistics 53 5 1354–1367.
IEEE R. Atmania and L. Settara, “An inverse source Cauchy-weighted time-fractional diffusion problem”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 5, pp. 1354–1367, 2024, doi: 10.15672/hujms.1230169.
ISNAD Atmania, Rahima - Settara, Loubna. “An Inverse Source Cauchy-Weighted Time-Fractional Diffusion Problem”. Hacettepe Journal of Mathematics and Statistics 53/5 (October 2024), 1354-1367. https://doi.org/10.15672/hujms.1230169.
JAMA Atmania R, Settara L. An inverse source Cauchy-weighted time-fractional diffusion problem. Hacettepe Journal of Mathematics and Statistics. 2024;53:1354–1367.
MLA Atmania, Rahima and Loubna Settara. “An Inverse Source Cauchy-Weighted Time-Fractional Diffusion Problem”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 5, 2024, pp. 1354-67, doi:10.15672/hujms.1230169.
Vancouver Atmania R, Settara L. An inverse source Cauchy-weighted time-fractional diffusion problem. Hacettepe Journal of Mathematics and Statistics. 2024;53(5):1354-67.