Research Article
BibTex RIS Cite
Year 2024, , 1674 - 1685, 28.12.2024
https://doi.org/10.15672/hujms.1240245

Abstract

References

  • [1] D. Ami´c, D. Beslo, B. Lucic, S. Nikolic and N. Trinajstic, The vertex-connectivity index revisited, J. Chem. Inf. Comput. Sci. 38 (5), 819-822, 1998.
  • [2] B. Bollobas and P. Erdös, Graphs of extremal weights, Ars Combin. 50, 225-233, 1998.
  • [3] D. Bonchev, Chemical graph theory: introduction and fundamentals, CRC Press, 1, 1-200, 1991.
  • [4] K.C. Das and I. Gutman Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. 52 (1), 104-112, 2004.
  • [5] Z. Du, B. Zhou, B and N. Trinajsti´c, Minimum sum-connectivity indices of trees and unicyclic graphs of a given matching number, J. Math. Chem. 47 (2), 842-855, 2010.
  • [6] Z. Du, B. Zhou, B and N. Trinajsti´c, On the general sum-connectivity index of trees, Appl. Math. Lett. 24 (3), 402-405, 2011.
  • [7] E. Estrada, L. Torres, L. Rodriguez and I. Gutman, An atom-bond connectivity index: modelling the enthalpy of formation of alkanes Indian Journal of Chemistry, 37A, 849- 855, 1998.
  • [8] S. Fajtlowicz, On conjectures of Graffiti-II Congr. Numer, 60, 187-197, 1987.
  • [9] O. Favaron, M. Maheo and J.F. Sacle, Some eigenvalue properties in graphs (conjectures of GraffitiII), Discrete Math. 111 (1-3), 197-220, 1993.
  • [10] W. Gao, H. Wu, M.K. Siddiqui, and A.Q. Baig, Study of biological networks using graph theory Saudi J. Biol. Sci. 25 (6), 1212-1219, 2018.
  • [11] X. Zhang, X. Wu, S. Akhter, M.K. Jamil, J.B. Liu and M.R. Farahani, Edge-version atom-bond connectivity and geometric arithmetic indices of generalized bridge molecular graphs Symmetry, 10 (12), 751–786, 2018.
  • [12] X. Zhang, H.M. Awais, M. Javaid, M. and M.K. Siddiqui, Multiplicative Zagreb indices of molecular graphs, J. Chem. 5, 1-19, 2019.
  • [13] I. Gutman and N. Trinajsti´c, Graph theory and molecular orbitals., Total -electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17, 535-538, 1972.
  • [14] I. Gutman and B. Furtula, Recent results in the theory of Randi index, University, Faculty of Science. 6, 1-282, 2008.
  • [15] V.R. Kulli, On K Banhatti indices of graphs, J. Comput. Math Sci. 7 (4), 213-218, 2016.
  • [16] V.R. Kulli, On K Banhatti indices and K hyper-Banhatti indices of V-Phenylenic nanotubes and nanotorus, J. Comput. Math Sci. 7 (6), 302-307, 2016.
  • [17] X. Zhang, A. Rauf, M. Ishtiaq, M.K. Siddiqui and M.H. Muhammad, On Degree Based Topological Properties of Two Carbon Nanotubes, Polycyclic Aromatic Compounds, 10, 22-35, 2020.
  • [18] X. Zhang, H. Jiang, J.B. Liu and Z. Shao, The cartesian product and join graphs on edge-version atom-bond connectivity and geometric arithmetic indices, Molecules, 23 (7), 1-17, 2018.
  • [19] V.R. Kulli, On K Banhatti indices and K hyper-Banhatti indices of V-Phenylenic nanotubes and nanotorus, J. Comput. Math Sci. 7 (6), 302-307, 2016.
  • [20] V.R. Kulli, New K Banhatti topological indices, International J. Fuzzy Math. Arch. 12 (1), 29-37, 2017.
  • [21] X. Li and Y. Shi, A survey on the Randi´c index, MATCH Commun. Math. Comput. Chem, 59 (1), 127-156, 2008.
  • [22] M. Randic Characterization of molecular branching, J. Am. Chem. Soc. 97 (23), 6609-6615, 1975.
  • [23] M.K. Siddiqui, M. Imran and A. Ahmad, On Zagreb indices, Zagreb polynomials of some nanostar dendrimers, Appl. Math. Comput. 280, 132-139, 2016.
  • [24] J.B. Liu, C. Wang, S. Wang and B. Wei, Zagreb indices and multiplicative Zagreb indices of eulerian graphs, Bull. Malays. Math. Sci. Soc. 42 (1), 67-78, 2019.
  • [25] J.B. Liu, J. Zhao, H. He and Z. Shao, Valency-based topological descriptors and structural property of the generalized sierpiski networks, J. Stat. Phys. 177 (6), 1131-1147, 2019.
  • [26] X. Zhang, M. Naeem, A.Q. Baig and M.A. Zahid, Study of Hardness of Superhard Crystals by Topological Indices, J. Chem. 10, 7-20, 2021.
  • [27] X. Zhang, M.K. Siddiqui, S. Javed, L. Sherin, F. Kausar and M.H. Muhammad, Physical analysis of heat for formation and entropy of Ceria Oxide using topological indices, Comb. Chem. High Throughput Screen, 25 (3), 441-450, 2022.
  • [28] J.B. Liu, J. Zhao, J. Min and J. Cao, The Hosoya index of graphs formed by a fractal graph, Fractals, 27 (8), 195-215, 2019.
  • [29] H.Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1), 17-20, 1947.
  • [30] L. Yan, W. Gao and J. Li, General harmonic index and general sum connectivity index of polyomino chains and nanotubes, J. Comput. Theor. Nanoscience, 12 (10), 3940-3944, 2015.
  • [31] L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25 (3), 561-566, 2012.
  • [32] L. Zhong, The harmonic index on unicyclic graphs. Ars Combin. 104, 261-269, 2012.
  • [33] B. Zhou and N. Trinajstic, On a novel connectivity index, J. Math. Chem. 46 (4), 1252-1270, 2009.
  • [34] B. Zhou and N. Trinajstic, On general sum-connectivity index, J. Math. Chem. 47 (1), 210-218, 2010.
  • [35] Z. Zhu and H. Lu, On the general sum-connectivity index of tricyclic graphs, J. Appl. Math. Comput. 51 (1-2), 177-188, 2016.

On some bounds of degree based topological indices for total graphs

Year 2024, , 1674 - 1685, 28.12.2024
https://doi.org/10.15672/hujms.1240245

Abstract

In this paper, we discuss the concept of total graph and computed some topological indices. If $\Theta$ is a simple graph, then the elements of $\Theta$ are the vertices $\Theta_V$ and edges $\Theta_E$. For $ e=u\acute{u}\in \Theta_E$, the vertex $u$ and edge $e$, as well as $\acute{u}$ and $e$, are incident. We define the general harmonic $(GH)$ index and general sum connectivity $(GS)$ index for graph $\Theta$ regarding incident vertex-edge degrees as: $H^{\alpha}(\Theta)=\sum_{e\acute{u}}\big(\frac{2}{\aleph_{\acute{u}}+\aleph_{e}}\big)^{\alpha}$ and $\hat{\chi} ^{\alpha}(\Theta)=\sum_{e\acute{u}}(\aleph_{\acute{u}}+\aleph_{e})^{\alpha}$, where $\alpha$ is any real number. In this article, we derive the closed formulas for a few standard graphs for $(GH)$ and $(GS)$ indices and then go on to calculate the lowest and the greatest general harmonic index, as well as the general sum-connectivity index, for various graphs that correspond to their total graphs.

References

  • [1] D. Ami´c, D. Beslo, B. Lucic, S. Nikolic and N. Trinajstic, The vertex-connectivity index revisited, J. Chem. Inf. Comput. Sci. 38 (5), 819-822, 1998.
  • [2] B. Bollobas and P. Erdös, Graphs of extremal weights, Ars Combin. 50, 225-233, 1998.
  • [3] D. Bonchev, Chemical graph theory: introduction and fundamentals, CRC Press, 1, 1-200, 1991.
  • [4] K.C. Das and I. Gutman Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. 52 (1), 104-112, 2004.
  • [5] Z. Du, B. Zhou, B and N. Trinajsti´c, Minimum sum-connectivity indices of trees and unicyclic graphs of a given matching number, J. Math. Chem. 47 (2), 842-855, 2010.
  • [6] Z. Du, B. Zhou, B and N. Trinajsti´c, On the general sum-connectivity index of trees, Appl. Math. Lett. 24 (3), 402-405, 2011.
  • [7] E. Estrada, L. Torres, L. Rodriguez and I. Gutman, An atom-bond connectivity index: modelling the enthalpy of formation of alkanes Indian Journal of Chemistry, 37A, 849- 855, 1998.
  • [8] S. Fajtlowicz, On conjectures of Graffiti-II Congr. Numer, 60, 187-197, 1987.
  • [9] O. Favaron, M. Maheo and J.F. Sacle, Some eigenvalue properties in graphs (conjectures of GraffitiII), Discrete Math. 111 (1-3), 197-220, 1993.
  • [10] W. Gao, H. Wu, M.K. Siddiqui, and A.Q. Baig, Study of biological networks using graph theory Saudi J. Biol. Sci. 25 (6), 1212-1219, 2018.
  • [11] X. Zhang, X. Wu, S. Akhter, M.K. Jamil, J.B. Liu and M.R. Farahani, Edge-version atom-bond connectivity and geometric arithmetic indices of generalized bridge molecular graphs Symmetry, 10 (12), 751–786, 2018.
  • [12] X. Zhang, H.M. Awais, M. Javaid, M. and M.K. Siddiqui, Multiplicative Zagreb indices of molecular graphs, J. Chem. 5, 1-19, 2019.
  • [13] I. Gutman and N. Trinajsti´c, Graph theory and molecular orbitals., Total -electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17, 535-538, 1972.
  • [14] I. Gutman and B. Furtula, Recent results in the theory of Randi index, University, Faculty of Science. 6, 1-282, 2008.
  • [15] V.R. Kulli, On K Banhatti indices of graphs, J. Comput. Math Sci. 7 (4), 213-218, 2016.
  • [16] V.R. Kulli, On K Banhatti indices and K hyper-Banhatti indices of V-Phenylenic nanotubes and nanotorus, J. Comput. Math Sci. 7 (6), 302-307, 2016.
  • [17] X. Zhang, A. Rauf, M. Ishtiaq, M.K. Siddiqui and M.H. Muhammad, On Degree Based Topological Properties of Two Carbon Nanotubes, Polycyclic Aromatic Compounds, 10, 22-35, 2020.
  • [18] X. Zhang, H. Jiang, J.B. Liu and Z. Shao, The cartesian product and join graphs on edge-version atom-bond connectivity and geometric arithmetic indices, Molecules, 23 (7), 1-17, 2018.
  • [19] V.R. Kulli, On K Banhatti indices and K hyper-Banhatti indices of V-Phenylenic nanotubes and nanotorus, J. Comput. Math Sci. 7 (6), 302-307, 2016.
  • [20] V.R. Kulli, New K Banhatti topological indices, International J. Fuzzy Math. Arch. 12 (1), 29-37, 2017.
  • [21] X. Li and Y. Shi, A survey on the Randi´c index, MATCH Commun. Math. Comput. Chem, 59 (1), 127-156, 2008.
  • [22] M. Randic Characterization of molecular branching, J. Am. Chem. Soc. 97 (23), 6609-6615, 1975.
  • [23] M.K. Siddiqui, M. Imran and A. Ahmad, On Zagreb indices, Zagreb polynomials of some nanostar dendrimers, Appl. Math. Comput. 280, 132-139, 2016.
  • [24] J.B. Liu, C. Wang, S. Wang and B. Wei, Zagreb indices and multiplicative Zagreb indices of eulerian graphs, Bull. Malays. Math. Sci. Soc. 42 (1), 67-78, 2019.
  • [25] J.B. Liu, J. Zhao, H. He and Z. Shao, Valency-based topological descriptors and structural property of the generalized sierpiski networks, J. Stat. Phys. 177 (6), 1131-1147, 2019.
  • [26] X. Zhang, M. Naeem, A.Q. Baig and M.A. Zahid, Study of Hardness of Superhard Crystals by Topological Indices, J. Chem. 10, 7-20, 2021.
  • [27] X. Zhang, M.K. Siddiqui, S. Javed, L. Sherin, F. Kausar and M.H. Muhammad, Physical analysis of heat for formation and entropy of Ceria Oxide using topological indices, Comb. Chem. High Throughput Screen, 25 (3), 441-450, 2022.
  • [28] J.B. Liu, J. Zhao, J. Min and J. Cao, The Hosoya index of graphs formed by a fractal graph, Fractals, 27 (8), 195-215, 2019.
  • [29] H.Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1), 17-20, 1947.
  • [30] L. Yan, W. Gao and J. Li, General harmonic index and general sum connectivity index of polyomino chains and nanotubes, J. Comput. Theor. Nanoscience, 12 (10), 3940-3944, 2015.
  • [31] L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25 (3), 561-566, 2012.
  • [32] L. Zhong, The harmonic index on unicyclic graphs. Ars Combin. 104, 261-269, 2012.
  • [33] B. Zhou and N. Trinajstic, On a novel connectivity index, J. Math. Chem. 46 (4), 1252-1270, 2009.
  • [34] B. Zhou and N. Trinajstic, On general sum-connectivity index, J. Math. Chem. 47 (1), 210-218, 2010.
  • [35] Z. Zhu and H. Lu, On the general sum-connectivity index of tricyclic graphs, J. Appl. Math. Comput. 51 (1-2), 177-188, 2016.
There are 35 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Hong Yang 0000-0002-5374-5829

Dingtian Zhang 0009-0006-7284-5151

Muhammad Farhan Hanif 0000-0002-2439-3967

Muhammad Faisal Hanif 0009-0006-2278-3132

Muhammad Kamran Siddiqui 0000-0002-2607-4847

Shazia Manzoor 0000-0001-9867-7148

Early Pub Date April 14, 2024
Publication Date December 28, 2024
Published in Issue Year 2024

Cite

APA Yang, H., Zhang, D., Hanif, M. F., Hanif, M. F., et al. (2024). On some bounds of degree based topological indices for total graphs. Hacettepe Journal of Mathematics and Statistics, 53(6), 1674-1685. https://doi.org/10.15672/hujms.1240245
AMA Yang H, Zhang D, Hanif MF, Hanif MF, Siddiqui MK, Manzoor S. On some bounds of degree based topological indices for total graphs. Hacettepe Journal of Mathematics and Statistics. December 2024;53(6):1674-1685. doi:10.15672/hujms.1240245
Chicago Yang, Hong, Dingtian Zhang, Muhammad Farhan Hanif, Muhammad Faisal Hanif, Muhammad Kamran Siddiqui, and Shazia Manzoor. “On Some Bounds of Degree Based Topological Indices for Total Graphs”. Hacettepe Journal of Mathematics and Statistics 53, no. 6 (December 2024): 1674-85. https://doi.org/10.15672/hujms.1240245.
EndNote Yang H, Zhang D, Hanif MF, Hanif MF, Siddiqui MK, Manzoor S (December 1, 2024) On some bounds of degree based topological indices for total graphs. Hacettepe Journal of Mathematics and Statistics 53 6 1674–1685.
IEEE H. Yang, D. Zhang, M. F. Hanif, M. F. Hanif, M. K. Siddiqui, and S. Manzoor, “On some bounds of degree based topological indices for total graphs”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 6, pp. 1674–1685, 2024, doi: 10.15672/hujms.1240245.
ISNAD Yang, Hong et al. “On Some Bounds of Degree Based Topological Indices for Total Graphs”. Hacettepe Journal of Mathematics and Statistics 53/6 (December 2024), 1674-1685. https://doi.org/10.15672/hujms.1240245.
JAMA Yang H, Zhang D, Hanif MF, Hanif MF, Siddiqui MK, Manzoor S. On some bounds of degree based topological indices for total graphs. Hacettepe Journal of Mathematics and Statistics. 2024;53:1674–1685.
MLA Yang, Hong et al. “On Some Bounds of Degree Based Topological Indices for Total Graphs”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 6, 2024, pp. 1674-85, doi:10.15672/hujms.1240245.
Vancouver Yang H, Zhang D, Hanif MF, Hanif MF, Siddiqui MK, Manzoor S. On some bounds of degree based topological indices for total graphs. Hacettepe Journal of Mathematics and Statistics. 2024;53(6):1674-85.