A graph $G$ is $k$ list equitably colorable, if for any given $k$-uniform list assignment $L$, $G$ is $L$-colorable and each color appears on at most $\lceil\frac{|V(G)|}{k}\rceil$ vertices. In 2009, Li and Bu obtained that for planar graph $G$, if $\Delta(G)\geq6$ and without $4$- and $6$-cycles, then $G$ is $\Delta(G)$ list equitably colorable. In order to further prove the conjecture of list equitable coloring, in this paper, we focus on planar graph with $\Delta(G)=5$, and prove that if $G$ is a planar graph without $4$- and $6$-cycles, then $G$ is $\Delta(G)$ list equitably colorable.
National Natural Science Foundation of China
NSFC12001332
This work was supported by the National Natural Science Foundation of China (Grant No. NSFC12001332). It was also supported by China Postdoctoral Science Foundation Funded Project (Grant No.2014M561909); the Nature Science Foundation of Shandong Province of China (Grant No. ZR2014AM028, ZR2017BA009)
NSFC12001332
Primary Language | English |
---|---|
Subjects | Mathematical Sciences |
Journal Section | Mathematics |
Authors | |
Project Number | NSFC12001332 |
Early Pub Date | August 27, 2024 |
Publication Date | October 15, 2024 |
Published in Issue | Year 2024 |