Computing affine equivalences and symmetries of trigonometric curves in arbitrary dimension
Year 2024,
, 637 - 651, 27.06.2024
Uğur Gözütok
Abstract
We present a new and efficient algorithm to compute affine equivalences and symmetries between two trigonometric curves in an arbitrary dimension. The algorithm benefits from the power of invariance and polynomial gcd and factoring without solving any system of equations. The algorithm is implemented in MAPLE, and extensive experimentations demonstrating the efficiency of the method are given.
Supporting Institution
TUBITAK
Thanks
Uğur Gözütok is supported by the grant 121C421, in the scope of 2218-National Postdoctoral Research Fellowship Program, from TUBITAK (The Scientific and Technological
Research Council of Türkiye).
References
- [1] J.G. Alcázar, U. Gözütok, H.A. Çoban, and C. Hermoso, Detecting affine equivalences
between implicit planar algebraic curves, Acta Appl. Math. 182, 2, 2022.
- [2] J.G. Alcázar, C. Hermoso, and G. Muntingh, Detecting similarity of rational plane
curves, J. Comput. Appl. Math. 269, 1–13, 2014.
- [3] J.G. Alcázar, C. Hermoso, and G. Muntingh, Detecting symmetries of rational plane
and space curves, Comput. Aided Geom. Des. 31, 199–209, 2014.
- [4] J.G. Alcázar and E. Quintero, Affine equivalences of trigonometric curves, Acta Appl.
Math. 170, 691–708, 2020.
- [5] A. Berner, M. Bokeloh, M.Wand, A. Schilling, and H.P. Seidel, A graph-based approach
to symmetry detection, in: Symposium on Volume and Point Based Graphics, 1–8,
2008.
- [6] M. Bizzarri, M. Lávička, and J. Vršek, Computing projective equivalences of special
algebraic varieties, J Comput. Appl. Math. 367, 112438, 2020.
- [7] M. Bizzarri, M. Lávička, and J. Vršek, Symmetries of discrete curves and point clouds
via trigonometric interpolation, J Comput. Appl. Math. 408, 114124, 2022.
- [8] M. Bokeloh, A. Berner, M. Wand, H.P. Seidel, and A. Schilling, Symmetry detection
using line features, Comput. Graph Forum 28 (2), 697–706, 2009.
- [9] M. Boutin, Numerically invariant signature curves, Int. J. Comput. Vis. 40 (3), 235–
248, 2000.
- [10] P. Brass and C. Knauer, Testing congruence and symmetry for general 3-dimensional
objects, Comput. Geom. 27, 3–11, 2004.
- [11] U. Gözütok, H.A. Çoban, Y. Sarolu, and J.G. Alcázar, A new method to detect projective
equivalences and symmetries of rational 3D curves, J. Comput. Appl. Math.
419, 114782, 2023.
- [12] https://www.ugurgozutok.com/academics/software
- [13] M. Hauer and B. Jüttler, Projective and affine symmetries and equivalences of rational
curves in arbitrary dimension, J. Symb. Comput. 87, 68–86, 2018.
- [14] M. Hauer, B. Jüttler, and J. Schicho, Projective and affine symmetries and equivalences
of rational and polynomial surfaces, J. Comput. Appl. Math. 349, 424–437,
2018.
- [15] H. Hong, Implicitization of curves parametrized by generalized trigonometric polynomials,
in: Proceedings of Applied Algebra, Algebraic Algorithms and Error Correcting
Codes (AAECC-11), 285–296, 1995.
- [16] H. Hong and J. Schicho, Algorithms for trigonometric curves (simplification, implicitization,
parameterization), J. Symb. Comput. 26 (3), 279–300, 1998.
- [17] E.A. Hook, Multiple points on Lissajous’s curves in two and three dimensions, Ann.
Math., Second Series, 4 (2), 67–88, 1903.
- [18] Z. Huang and F.S. Cohen, Affine-invariant B-spline moments for curve matching,
IEEE Trans. Image Process 5 (10), 1473–1480, 1996.
- [19] J.D. Lawrence, A catalog of special plane curves, New York, Dover, pp. 178-179 and
181-183, 1972.
- [20] P. Lebmeir and J. Richter-Gebert, Rotations, translations and symmetry detection
for complexified curves, Comput. Aided Geom. Des. 25, 707–719, 2008.
- [21] G. Loy and J. Eklundh, Detecting symmetry and symmetric constellations of features,
in: Proceedings ECCV 2006, 9th European Conference on Computer Vision, 508–521,
2006.
- [22] Maple™, Maplesoft, a Division of Waterloo Maple Inc., Waterloo, Ontario, 2021.
- [23] N.J. Mitra, L.J. Guibas, and M. Pauly, Partial and approximate symmetry detection
for 3D geometry, ACM Trans. Graph 25 (3), 560–568, 2006.
- [24] K. Palmer, T. Ridgway, O. Al-Rawi, I. Johnson, and M. Poullis, Lissajous Figures: An
Engineering Tool for Root Cause Analysis of Individual CasesA Preliminary Concept,
J Extra Corpor. Technol. 43 (3), 153–156, 2011.
- [25] R. Sulanke, The fundamental theorem for curves in the n-dimensional
Euclidean space, 2020, http://www-irm.mathematik.hu-berlin.de/~sulanke/
diffgeo/euklid/ECTh.pdf.
- [26] C. Sun and J. Sherrah, 3D symmetry detection using the extended Gaussian image,
IEEE Trans. Pattern Anal. Mach. Intell. 19, 164–168, 1997.
- [27] H. Yalçn, M. Ünel, and W. Wolowich, Implicitization of parametric curves by matrix
annihilation, Int. J. Comput. Vis. 54, 105–115, 2003.