Local linear-$k$NN smoothing for semi-functional partial linear regression
Year 2024,
, 537 - 555, 23.04.2024
Kedir Nassima Houda
,
Benchikh Tawfik
,
Naceri Amina
Fetitah Omar
Abstract
The aim of this paper is to study a semi-functional partial linear regression model. The estimators are constructed by $k$-nearest neighbors local linear method. Some asymptotic results are established for an i.i.d sample under certain conditions, including asymptotic normality of the parametric component and the almost certain convergence (with rate) of the non-parametric component. Lastly, using cross-validation, the performances of our estimation method are presented on simulated data and on real data by comparing them with other known approaches for semi-functional partial linear regression models.
Supporting Institution
ATRST,
Project Number
PRFU, C00L03UN220120220002
References
- [1] I.M. Almanjahie, W. Mesfer, A. Laksaci and M. Rachdi, Computational aspects of the
kNN local linear smoothing for some conditional models in high dimensional statistics,
Comm. Statist. Simulation Comput. 52 (7), 2985-3005, 2023.
- [2] I.M. Almanjahie, O. Fetitah, M.K. Attouch and T. Benchikh, Functional nonparametric
predictions in food industry using near-infrared spectroscopy measurement, Comput.
Mater. Contin. 74 (3), 6307-6319, 2023.
- [3] G. Aneiros-Pérez, I. Horov´a, M. Hu˜skov´a and P. Vieu, Editorial for the special issue
on functional data analysis and related fields, J. Multivariate Anal. 189, 2022.
- [4] G. Aneiros-Pérez and P. Vieu, Automatic estimation procedure in partial linear model
with functional data, Stat. Pap. 52 (4), 751-771, 2011.
- [5] G. Aneiros Pérez, P. Ra˜na, P. Vieu and J. Vilar, Bootstrap in semi-functional partial
linear regression under dependence, Test 27 (3), 659-679, 2018.
- [6] G. Aneiros-Pérez and P. Vieu, Nonparametric time series prediction: A semifunctional
partial linear modeling, J. Multivariate Anal. 99, 834-857, 2008.
- [7] G. Aneiros-Pérez and P. Vieu, Semi-functional partial linear regression, Stat. Probab.
Lett. 76 (11), 1102-1110, 2006.
- [8] M.K Attouch and T. Benchikh, Asymptotic distribution of robust k-nearest neighbour
estimator for functional nonparametric models, Mat. Vesnik 644, 275-285, 2012.
- [9] M.K Attouch, A. Laksaci and F. Rafaa, On the local linear estimate for functional
regression: uniform in bandwidth consistency, Comm. Statist. Theory Methods 48,
1836-1853, 2019.
- [10] M.K. Attouch, A. Laksaci and F. Rafaa, Estimation locale linéaire de la régression
non paramétrique fonctionnelle par la méthode des k plus proches voisins, Comptes
Rendus. Mathématique 355 (7), 824-829, 2017.
- [11] A. Baíllo and A. Grané, Local linear regression for functional predictor and scalar
response, J. Multivariate Anal. 100 (1), 102-111, 2009.
- [12] J. Barrientos-Marin, F. Ferraty and P. Vieu, Locally modelled regression and functional
data, J Nonparametr Stat. 22 (5-6), 617-632, 2010.
- [13] M. Benallou, M.K. Attouch, T. Benchikh and O. Fetitah, Asymptotic results of
semi-functional partial linear regression estimate under functional spatial dependency,
Comm. Statist. Theory Methods 51, 1-21, 2021.
- [14] A. Berlinet, A. Elamine and A. Mas, Local linear regression for functional data, Ann.
Inst. Statist. Math. 63 (5), 1047-1075, 2011.
- [15] G. Boente and A. Vahnovan, Robust estimators in semi-functional partial linear regression
models, J. Multivariate Anal. 154 (C), 59-84, 2017.
- [16] D. Bosq and D. Blanke, Inference and Prediction in Large Dimension, Wiley Series
in Probability and Statistics, Chichester, 2007.
- [17] P. Brown, T. Fearn and M. Vannucci, Bayesian wavelet regression on curves with
application to a spectroscopic calibration problem, J. Amer. Statist. Assoc. 96, 398-
408, 2001.
- [18] F. Burba, F. Ferraty and P. Vieu, k-Nearest Neighbour method in functional nonparametric
regression. J. Nonparametr. Stat. 21 (4), 453-469, 2009.
- [19] A. Chouaf and A. Laksaci, On the functional local linear estimate for spatial regression,
Stat. Risk Model 29, 189-214, 2013.
- [20] J. Demongeot, A. Naceri, A. Laksaci and M. Rachdi, Local linear regression modelization
when all variables are curves, Statist. Probab. Lett. 121, 37-44, 2017.
- [21] J. Fan and I. Gijbels. Local Polynomial Modelling and Its Applications, London:
Chapman and Hall, 1996.
- [22] S. Feng and L. Xue, Partially functional linear varying coefficient model, Statistics
50 (4), 717-732, 2016.
- [23] F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis. Theory and Practice,
Springer Series in Statistics, New York, 2006.
- [24] T. Hsing and R.L. Eubank, Theoretical Foundations of Functional Data Analysis,
with an Introduction to Linear Operators, John Wiley and Sons, 2015.
- [25] S. Greven and F. Scheipl, A general framework for functional regression modelling,
Stat. Model. 17 (1-2), 1-35, 2017.
- [26] L. Kara-Zaitri, A. Laksaci, M. Rachdi and P. Vieu, Uniform in bandwidth consistency
for various kernel estimators involving functional data, J. Nonparametr. Stat. 29 (1),
85-107, 2017.
- [27] N. Kudraszow and P. Vieu P, Uniform consistency of kNN regressors for functional
variables, Statist. Probab. Lett. 83 (8), 1863-1870, 2013.
- [28] H. Lian, Convergence of functional k-nearest neighbor regression estimate with functional
responses, Electron. J. Stat. 5, 31-40, 2011.
- [29] H. Lian, Functional partial linear model, J. Nonparametr. Stat. 23 (1), 115-128, 2011.
- [30] N. Ling, G. Aneiros-Pérez and P. Vieu, knn estimation in functional partial linear
modeling, Statist. Papers 61 (1), 423-444, 2020.
- [31] N. Ling, R. Kan, P. Vieu and S. Meng, Semi-functional partially linear regression
model with responses missing at random, Metrika 82 (1), 39-70, 2019.
- [32] N. Ling, S. Meng and P. Vieu, Uniform consistency rate of kNN regression estimation
for functional time series data, J. Nonparametr. Stat. 31 (2),451-468, 2019.
- [33] N. Ling and P. Vieu, On semiparametric regression in functional data analysis, Wiley
Interdiscip. Rev.: Comput. Stat. 12 (6), 20-30, 2020.
- [34] N. Ling and P. Vieu, Nonparametric modelling for functional data: selected survey
and tracks for future, Statistics 52 (4), 934-949, 2018.
- [35] S. Novo, G. Aneiros and P. Vieu. A kNN procedure in semiparametric functional data
analysis, Statist. Probab. Lett. 17, 2021.
- [36] J. Ramsay and B. Silverman, Functional Data Analysis (Second Edition), Spinger-
Verlag, New York, 2005.
- [37] H. Shang, Bayesian bandwidth estimation for a semi-functional partial linear regression
model with unknown error density, Comput. Stat. 29 (3-4), 829-848, 2014.
- [38] J. Zhang, Analysis of Variance for Functional Data, Monographs on Statistics and
Applied Probability, CRC Press, 127, 2014.
- [39] F. Zhao and B. Zhang, Testing linearity in functional partially linear models, Acta
Math. Appl. Sin., Doi: 10.1007/s10255-023-1040-0, 2022.
- [40] Z. Zhou and Z. Lin, Asymptotic normality of locally modelled regression estimator for
functional data, J. Nonparametr. Stat. 28 (1), 116-131, 2016.
Year 2024,
, 537 - 555, 23.04.2024
Kedir Nassima Houda
,
Benchikh Tawfik
,
Naceri Amina
Fetitah Omar
Project Number
PRFU, C00L03UN220120220002
References
- [1] I.M. Almanjahie, W. Mesfer, A. Laksaci and M. Rachdi, Computational aspects of the
kNN local linear smoothing for some conditional models in high dimensional statistics,
Comm. Statist. Simulation Comput. 52 (7), 2985-3005, 2023.
- [2] I.M. Almanjahie, O. Fetitah, M.K. Attouch and T. Benchikh, Functional nonparametric
predictions in food industry using near-infrared spectroscopy measurement, Comput.
Mater. Contin. 74 (3), 6307-6319, 2023.
- [3] G. Aneiros-Pérez, I. Horov´a, M. Hu˜skov´a and P. Vieu, Editorial for the special issue
on functional data analysis and related fields, J. Multivariate Anal. 189, 2022.
- [4] G. Aneiros-Pérez and P. Vieu, Automatic estimation procedure in partial linear model
with functional data, Stat. Pap. 52 (4), 751-771, 2011.
- [5] G. Aneiros Pérez, P. Ra˜na, P. Vieu and J. Vilar, Bootstrap in semi-functional partial
linear regression under dependence, Test 27 (3), 659-679, 2018.
- [6] G. Aneiros-Pérez and P. Vieu, Nonparametric time series prediction: A semifunctional
partial linear modeling, J. Multivariate Anal. 99, 834-857, 2008.
- [7] G. Aneiros-Pérez and P. Vieu, Semi-functional partial linear regression, Stat. Probab.
Lett. 76 (11), 1102-1110, 2006.
- [8] M.K Attouch and T. Benchikh, Asymptotic distribution of robust k-nearest neighbour
estimator for functional nonparametric models, Mat. Vesnik 644, 275-285, 2012.
- [9] M.K Attouch, A. Laksaci and F. Rafaa, On the local linear estimate for functional
regression: uniform in bandwidth consistency, Comm. Statist. Theory Methods 48,
1836-1853, 2019.
- [10] M.K. Attouch, A. Laksaci and F. Rafaa, Estimation locale linéaire de la régression
non paramétrique fonctionnelle par la méthode des k plus proches voisins, Comptes
Rendus. Mathématique 355 (7), 824-829, 2017.
- [11] A. Baíllo and A. Grané, Local linear regression for functional predictor and scalar
response, J. Multivariate Anal. 100 (1), 102-111, 2009.
- [12] J. Barrientos-Marin, F. Ferraty and P. Vieu, Locally modelled regression and functional
data, J Nonparametr Stat. 22 (5-6), 617-632, 2010.
- [13] M. Benallou, M.K. Attouch, T. Benchikh and O. Fetitah, Asymptotic results of
semi-functional partial linear regression estimate under functional spatial dependency,
Comm. Statist. Theory Methods 51, 1-21, 2021.
- [14] A. Berlinet, A. Elamine and A. Mas, Local linear regression for functional data, Ann.
Inst. Statist. Math. 63 (5), 1047-1075, 2011.
- [15] G. Boente and A. Vahnovan, Robust estimators in semi-functional partial linear regression
models, J. Multivariate Anal. 154 (C), 59-84, 2017.
- [16] D. Bosq and D. Blanke, Inference and Prediction in Large Dimension, Wiley Series
in Probability and Statistics, Chichester, 2007.
- [17] P. Brown, T. Fearn and M. Vannucci, Bayesian wavelet regression on curves with
application to a spectroscopic calibration problem, J. Amer. Statist. Assoc. 96, 398-
408, 2001.
- [18] F. Burba, F. Ferraty and P. Vieu, k-Nearest Neighbour method in functional nonparametric
regression. J. Nonparametr. Stat. 21 (4), 453-469, 2009.
- [19] A. Chouaf and A. Laksaci, On the functional local linear estimate for spatial regression,
Stat. Risk Model 29, 189-214, 2013.
- [20] J. Demongeot, A. Naceri, A. Laksaci and M. Rachdi, Local linear regression modelization
when all variables are curves, Statist. Probab. Lett. 121, 37-44, 2017.
- [21] J. Fan and I. Gijbels. Local Polynomial Modelling and Its Applications, London:
Chapman and Hall, 1996.
- [22] S. Feng and L. Xue, Partially functional linear varying coefficient model, Statistics
50 (4), 717-732, 2016.
- [23] F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis. Theory and Practice,
Springer Series in Statistics, New York, 2006.
- [24] T. Hsing and R.L. Eubank, Theoretical Foundations of Functional Data Analysis,
with an Introduction to Linear Operators, John Wiley and Sons, 2015.
- [25] S. Greven and F. Scheipl, A general framework for functional regression modelling,
Stat. Model. 17 (1-2), 1-35, 2017.
- [26] L. Kara-Zaitri, A. Laksaci, M. Rachdi and P. Vieu, Uniform in bandwidth consistency
for various kernel estimators involving functional data, J. Nonparametr. Stat. 29 (1),
85-107, 2017.
- [27] N. Kudraszow and P. Vieu P, Uniform consistency of kNN regressors for functional
variables, Statist. Probab. Lett. 83 (8), 1863-1870, 2013.
- [28] H. Lian, Convergence of functional k-nearest neighbor regression estimate with functional
responses, Electron. J. Stat. 5, 31-40, 2011.
- [29] H. Lian, Functional partial linear model, J. Nonparametr. Stat. 23 (1), 115-128, 2011.
- [30] N. Ling, G. Aneiros-Pérez and P. Vieu, knn estimation in functional partial linear
modeling, Statist. Papers 61 (1), 423-444, 2020.
- [31] N. Ling, R. Kan, P. Vieu and S. Meng, Semi-functional partially linear regression
model with responses missing at random, Metrika 82 (1), 39-70, 2019.
- [32] N. Ling, S. Meng and P. Vieu, Uniform consistency rate of kNN regression estimation
for functional time series data, J. Nonparametr. Stat. 31 (2),451-468, 2019.
- [33] N. Ling and P. Vieu, On semiparametric regression in functional data analysis, Wiley
Interdiscip. Rev.: Comput. Stat. 12 (6), 20-30, 2020.
- [34] N. Ling and P. Vieu, Nonparametric modelling for functional data: selected survey
and tracks for future, Statistics 52 (4), 934-949, 2018.
- [35] S. Novo, G. Aneiros and P. Vieu. A kNN procedure in semiparametric functional data
analysis, Statist. Probab. Lett. 17, 2021.
- [36] J. Ramsay and B. Silverman, Functional Data Analysis (Second Edition), Spinger-
Verlag, New York, 2005.
- [37] H. Shang, Bayesian bandwidth estimation for a semi-functional partial linear regression
model with unknown error density, Comput. Stat. 29 (3-4), 829-848, 2014.
- [38] J. Zhang, Analysis of Variance for Functional Data, Monographs on Statistics and
Applied Probability, CRC Press, 127, 2014.
- [39] F. Zhao and B. Zhang, Testing linearity in functional partially linear models, Acta
Math. Appl. Sin., Doi: 10.1007/s10255-023-1040-0, 2022.
- [40] Z. Zhou and Z. Lin, Asymptotic normality of locally modelled regression estimator for
functional data, J. Nonparametr. Stat. 28 (1), 116-131, 2016.