Research Article
BibTex RIS Cite

Introduction in third-order fuzzy differential subordination

Year 2024, , 1627 - 1641, 28.12.2024
https://doi.org/10.15672/hujms.1319541

Abstract

In light of the well-established and widely-used theory of differential subordination, recent works incorporating fuzzy elements into Geometric Function Theory have given rise to the concept of fuzzy differential subordination. Second-order fuzzy differential subordinations were taken into consideration for studies up until this point. The research described in this paper aims to expand the concept of fuzzy differential subordination to third-order fuzzy differential subordination, building on an idea first put forth in 2011 by Jos\'{e} A. Antonino and Sanford S. Miller and still being investigated by scholars today. The key concepts and preliminary findings required for the development of this branch of fuzzy differential subordination are introduced. The class of admissible functions is specified, the fundamental theorems are established and the fundamental concepts of the third-order fuzzy subordination approach are presented. Several examples constructed as applications of the new results demonstrate the applicability of the new findings.

References

  • [1] A. Alb Lupaş, Applications of the fractional calculus in fuzzy differential subordinations and superordinations, Mathematics 9(20), 2601, 2021.
  • [2] A. Alb Lupaş, On special fuzzy differential subordinations obtained for RiemannLiouville fractional integral of Ruscheweyh and Sˇalˇagean operator, Axioms 11(9), 428, 2022.
  • [3] A. Alb Lupaş and A. Cˇataş, Fuzzy differential subordination of the AtanganaBaleanu fractional integral, Symmetry 13(10), 1929, 2021.
  • [4] A. Alb Lupaş and G. Oros, On special fuzzy differential subordinations using Sˇalˇagean and Ruscheweyh operators, Appl. Math. Comput. 261, 119127, 2015.
  • [5] A. Alb Lupaş A and G.I. Oros, New applications of Sˇalˇagean and Ruscheweyh operators for obtaining fuzzy differential subordinations, Mathematics 9(16), 2000, 2021.
  • [6] H. Al-Janaby, F. Ghanim and M. Darus, On the third-order complex differential inequalities of $\xi$-generalized-HurwitzLerch Zeta functions, Mathematics 8, 845, 2020.
  • [7] J.A. Antonino and S.S. Miller, Third-order differential inequalities and subordinations in the complex plane, Complex Var. Elliptic Equ. 56, 439-454, 2011.
  • [8] W.G. Atshan, A.H. Battor and A.F. Abaas, On third-order differential subordination results for univalent analytic functions involving an operator, J. Phys., Conf. Ser. 1664, 012041, 2020.
  • [9] W.G. Atshan, H.Z. Hassan and S. Yalçın, On third-order differential subordination results for univalent functions defined by differential operator, Uzb. Math. J. 62, 26- 42, 2021.
  • [10] W.G. Atshan and K.O. Hussain, Fuzzy differential superordination, Theory Appl. Math. Comput. Sci. 7, 27-38, 2017.
  • [11] A.F. Azzam, S.A. Shah, A. Cˇata and L.-I. Cotîrlˇa, On fuzzy spiral-like functions associated with the family of linear operators, Fractal Fract. 7(2), 145, 2023.
  • [12] A.M. Darweesh, W.G. Atshan, A.H. Battor AH and A. Alb Lupaş, Third-order differential subordination results for analytic functions associated with a certain differential operator, Symmetry 14, 99, 2022.
  • [13] S.M. El-Deeb, N. Khan, M. Arif and A. Alburaikan, Fuzzy differential subordination for meromorphic function, Axioms 11(10), 534, 2022.
  • [14] S.M. El-Deeb and G.I. Oros, Fuzzy differential subordinations connected with the linear operator, Math. Bohem. 146(4), 397-406, 2021.
  • [15] R. Ibrahim, M. Ahmad and H. Al-Janaby, Third-order differential subordination and superordination involving a fractional operator, Open Math. 13, 706-728, 2015.
  • [16] B. Kanwal, S. Hussain and A. Saliu, Fuzzy differential subordination related to strongly Janowski functions, Appl. Math. Sci. Eng. 31(1), 2170371, 2023.
  • [17] S.S. Miller and P.T. Mocanu, Differential Subordinations, Theory and Applications, Marcel Dekker Inc, New York, NY, USA, Basel, Switzerland, 2000.
  • [18] A.K. Mishra, A. Prajapati and P. Gochhayat, Third-order differential subordination and superordination results for analytic functions involving the Hohlov operator, Tbil. Math. J. 13(3), 95-109, 2020.
  • [19] U.H. Naik, R.M. Shaikh, M.T. Gophane and A.K. Wanas, Some differential subordinations and fuzzy differential subordinations using generalized integral operator, Ital. J. Pure Appl. Math. 48, 830-842, 2022.
  • [20] K.I. Noor and M.A. Noor, Fuzzy differential subordination involving generalized Noor- Sˇalˇagean operator, Inform. Sci. Lett. 11(6), 1905-1911, 2022.
  • [21] G.I. Oros, Fuzzy differential subordinations obtained using a hypergeometric integral operator, Mathematics 9(20), 2539, 2021.
  • [22] G.I. Oros, New fuzzy differential subordinations, Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 70, 229-240, 2021.
  • [23] G.I. Oros, Univalence criteria for analytic functions obtained using fuzzy differential subordinations, Turk. J. Math. 46, 1478-1491, 2022.
  • [24] G.I. Oros and G. Oros, The notion of subordination in fuzzy sets theory, Gen. Math. 19, 97-103, 2011.
  • [25] G.I. Oros and G. Oros, Fuzzy differential subordination, Acta Univ. Apulensis 3, 5564, 2012.
  • [26] G.I. Oros and G. Oros, Dominants and best dominants in fuzzy differential subordinations, Stud. Univ. Babeş-Bolyai, Math. 57, 239-248, 2012.
  • [27] G.I. Oros and G. Oros, Briot-Bouquet fuzzy differential subordination, An. Univ. Oradea, Fasc. Mat. 19, 83-87, 2012.
  • [28] G.I. Oros GI, G. Oros G and L.F. Preluca, Third-order differential subordinations using fractional integral of Gaussian hypergeometric function, Axioms 12(2), 133, 2023.
  • [29] D. Rˇaducanu, Third-order differential subordinations for analytic functions associated with generalized Mittag-Leffler functions, Mediterr. J. Math. 14, 167, 2017.
  • [30] S.A. Shah, E.E. Ali, A.A. Maitlo, T. Abdeljawad T and A.M. Albalahi, Inclusion results for the class of fuzzy $\alpha$-convex functions, AIMS Math. 8, 1375-1383, 2022.
  • [31] H.M. Srivastava and S.M. El-Deeb, Fuzzy differential subordinations based upon the Mittag-Leffler type Borel distribution, Symmetry 13, 1023, 2021.
  • [32] H.M. Srivastava, A. Prajapati and P. Gochhayat, Third-order differential subordination and differential superordination results for analytic functions involving the Srivastava-Attiya operator, Appl. Math. Inf. Sci. 12(3), 469-481, 2018.
  • [33] H. Tang and E. Deniz, Third-order differential subordination results for analytic functions involving the generalized Bessel functions, Acta Math. Sci. 34(6), 1707-1719, 2014.
  • [34] H. Tang, S.M. Srivastava, S.H. Li and L.N. Ma, Third-order differential subordination and superordination results for meromorphically multivalent functions associated with the Liu-Srivastava operator, Abstr. Appl. Anal. 2014, Article ID 792175, 2014.
  • [35] H. Tang, S.M. Srivastava, E. Deniz and S.H. Li, Third-order differential superordination involving the generalized Bessel functions, Bull. Malays. Math. Sci. Soc. 38, 1669-1688, 2015.
  • [36] K. Thilagavathi, Fuzzy subordination and superordination results for certain subclasses of analytic functions associated with Srivastava-Attiya operator, Int. J. Pure Appl. Math. 118, 921929, 2018.
  • [37] A.O. Venter, On special fuzzy differential subordination using Ruscheweyh operator, An. Univ. Oradea, Fasc. Mat. 22, 167-176, 2015.
  • [38] A.K. Wanas, Fuzzy differential subordinations for analytic functions involving Wanas operator, Ikonion J. Math. 2(1), 1-9, 2020.
  • [39] L.A. Zadeh, Fuzzy Sets, Inf. Control 8, 338353, 1965.
Year 2024, , 1627 - 1641, 28.12.2024
https://doi.org/10.15672/hujms.1319541

Abstract

References

  • [1] A. Alb Lupaş, Applications of the fractional calculus in fuzzy differential subordinations and superordinations, Mathematics 9(20), 2601, 2021.
  • [2] A. Alb Lupaş, On special fuzzy differential subordinations obtained for RiemannLiouville fractional integral of Ruscheweyh and Sˇalˇagean operator, Axioms 11(9), 428, 2022.
  • [3] A. Alb Lupaş and A. Cˇataş, Fuzzy differential subordination of the AtanganaBaleanu fractional integral, Symmetry 13(10), 1929, 2021.
  • [4] A. Alb Lupaş and G. Oros, On special fuzzy differential subordinations using Sˇalˇagean and Ruscheweyh operators, Appl. Math. Comput. 261, 119127, 2015.
  • [5] A. Alb Lupaş A and G.I. Oros, New applications of Sˇalˇagean and Ruscheweyh operators for obtaining fuzzy differential subordinations, Mathematics 9(16), 2000, 2021.
  • [6] H. Al-Janaby, F. Ghanim and M. Darus, On the third-order complex differential inequalities of $\xi$-generalized-HurwitzLerch Zeta functions, Mathematics 8, 845, 2020.
  • [7] J.A. Antonino and S.S. Miller, Third-order differential inequalities and subordinations in the complex plane, Complex Var. Elliptic Equ. 56, 439-454, 2011.
  • [8] W.G. Atshan, A.H. Battor and A.F. Abaas, On third-order differential subordination results for univalent analytic functions involving an operator, J. Phys., Conf. Ser. 1664, 012041, 2020.
  • [9] W.G. Atshan, H.Z. Hassan and S. Yalçın, On third-order differential subordination results for univalent functions defined by differential operator, Uzb. Math. J. 62, 26- 42, 2021.
  • [10] W.G. Atshan and K.O. Hussain, Fuzzy differential superordination, Theory Appl. Math. Comput. Sci. 7, 27-38, 2017.
  • [11] A.F. Azzam, S.A. Shah, A. Cˇata and L.-I. Cotîrlˇa, On fuzzy spiral-like functions associated with the family of linear operators, Fractal Fract. 7(2), 145, 2023.
  • [12] A.M. Darweesh, W.G. Atshan, A.H. Battor AH and A. Alb Lupaş, Third-order differential subordination results for analytic functions associated with a certain differential operator, Symmetry 14, 99, 2022.
  • [13] S.M. El-Deeb, N. Khan, M. Arif and A. Alburaikan, Fuzzy differential subordination for meromorphic function, Axioms 11(10), 534, 2022.
  • [14] S.M. El-Deeb and G.I. Oros, Fuzzy differential subordinations connected with the linear operator, Math. Bohem. 146(4), 397-406, 2021.
  • [15] R. Ibrahim, M. Ahmad and H. Al-Janaby, Third-order differential subordination and superordination involving a fractional operator, Open Math. 13, 706-728, 2015.
  • [16] B. Kanwal, S. Hussain and A. Saliu, Fuzzy differential subordination related to strongly Janowski functions, Appl. Math. Sci. Eng. 31(1), 2170371, 2023.
  • [17] S.S. Miller and P.T. Mocanu, Differential Subordinations, Theory and Applications, Marcel Dekker Inc, New York, NY, USA, Basel, Switzerland, 2000.
  • [18] A.K. Mishra, A. Prajapati and P. Gochhayat, Third-order differential subordination and superordination results for analytic functions involving the Hohlov operator, Tbil. Math. J. 13(3), 95-109, 2020.
  • [19] U.H. Naik, R.M. Shaikh, M.T. Gophane and A.K. Wanas, Some differential subordinations and fuzzy differential subordinations using generalized integral operator, Ital. J. Pure Appl. Math. 48, 830-842, 2022.
  • [20] K.I. Noor and M.A. Noor, Fuzzy differential subordination involving generalized Noor- Sˇalˇagean operator, Inform. Sci. Lett. 11(6), 1905-1911, 2022.
  • [21] G.I. Oros, Fuzzy differential subordinations obtained using a hypergeometric integral operator, Mathematics 9(20), 2539, 2021.
  • [22] G.I. Oros, New fuzzy differential subordinations, Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 70, 229-240, 2021.
  • [23] G.I. Oros, Univalence criteria for analytic functions obtained using fuzzy differential subordinations, Turk. J. Math. 46, 1478-1491, 2022.
  • [24] G.I. Oros and G. Oros, The notion of subordination in fuzzy sets theory, Gen. Math. 19, 97-103, 2011.
  • [25] G.I. Oros and G. Oros, Fuzzy differential subordination, Acta Univ. Apulensis 3, 5564, 2012.
  • [26] G.I. Oros and G. Oros, Dominants and best dominants in fuzzy differential subordinations, Stud. Univ. Babeş-Bolyai, Math. 57, 239-248, 2012.
  • [27] G.I. Oros and G. Oros, Briot-Bouquet fuzzy differential subordination, An. Univ. Oradea, Fasc. Mat. 19, 83-87, 2012.
  • [28] G.I. Oros GI, G. Oros G and L.F. Preluca, Third-order differential subordinations using fractional integral of Gaussian hypergeometric function, Axioms 12(2), 133, 2023.
  • [29] D. Rˇaducanu, Third-order differential subordinations for analytic functions associated with generalized Mittag-Leffler functions, Mediterr. J. Math. 14, 167, 2017.
  • [30] S.A. Shah, E.E. Ali, A.A. Maitlo, T. Abdeljawad T and A.M. Albalahi, Inclusion results for the class of fuzzy $\alpha$-convex functions, AIMS Math. 8, 1375-1383, 2022.
  • [31] H.M. Srivastava and S.M. El-Deeb, Fuzzy differential subordinations based upon the Mittag-Leffler type Borel distribution, Symmetry 13, 1023, 2021.
  • [32] H.M. Srivastava, A. Prajapati and P. Gochhayat, Third-order differential subordination and differential superordination results for analytic functions involving the Srivastava-Attiya operator, Appl. Math. Inf. Sci. 12(3), 469-481, 2018.
  • [33] H. Tang and E. Deniz, Third-order differential subordination results for analytic functions involving the generalized Bessel functions, Acta Math. Sci. 34(6), 1707-1719, 2014.
  • [34] H. Tang, S.M. Srivastava, S.H. Li and L.N. Ma, Third-order differential subordination and superordination results for meromorphically multivalent functions associated with the Liu-Srivastava operator, Abstr. Appl. Anal. 2014, Article ID 792175, 2014.
  • [35] H. Tang, S.M. Srivastava, E. Deniz and S.H. Li, Third-order differential superordination involving the generalized Bessel functions, Bull. Malays. Math. Sci. Soc. 38, 1669-1688, 2015.
  • [36] K. Thilagavathi, Fuzzy subordination and superordination results for certain subclasses of analytic functions associated with Srivastava-Attiya operator, Int. J. Pure Appl. Math. 118, 921929, 2018.
  • [37] A.O. Venter, On special fuzzy differential subordination using Ruscheweyh operator, An. Univ. Oradea, Fasc. Mat. 22, 167-176, 2015.
  • [38] A.K. Wanas, Fuzzy differential subordinations for analytic functions involving Wanas operator, Ikonion J. Math. 2(1), 1-9, 2020.
  • [39] L.A. Zadeh, Fuzzy Sets, Inf. Control 8, 338353, 1965.
There are 39 citations in total.

Details

Primary Language English
Subjects Real and Complex Functions (Incl. Several Variables)
Journal Section Mathematics
Authors

Georgia Irina Oros 0000-0003-2902-4455

Gheorghe Oros 0000-0002-1000-094X

Özlem Güney 0000-0002-3010-7795

Early Pub Date January 10, 2024
Publication Date December 28, 2024
Published in Issue Year 2024

Cite

APA Oros, G. I., Oros, G., & Güney, Ö. (2024). Introduction in third-order fuzzy differential subordination. Hacettepe Journal of Mathematics and Statistics, 53(6), 1627-1641. https://doi.org/10.15672/hujms.1319541
AMA Oros GI, Oros G, Güney Ö. Introduction in third-order fuzzy differential subordination. Hacettepe Journal of Mathematics and Statistics. December 2024;53(6):1627-1641. doi:10.15672/hujms.1319541
Chicago Oros, Georgia Irina, Gheorghe Oros, and Özlem Güney. “Introduction in Third-Order Fuzzy Differential Subordination”. Hacettepe Journal of Mathematics and Statistics 53, no. 6 (December 2024): 1627-41. https://doi.org/10.15672/hujms.1319541.
EndNote Oros GI, Oros G, Güney Ö (December 1, 2024) Introduction in third-order fuzzy differential subordination. Hacettepe Journal of Mathematics and Statistics 53 6 1627–1641.
IEEE G. I. Oros, G. Oros, and Ö. Güney, “Introduction in third-order fuzzy differential subordination”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 6, pp. 1627–1641, 2024, doi: 10.15672/hujms.1319541.
ISNAD Oros, Georgia Irina et al. “Introduction in Third-Order Fuzzy Differential Subordination”. Hacettepe Journal of Mathematics and Statistics 53/6 (December 2024), 1627-1641. https://doi.org/10.15672/hujms.1319541.
JAMA Oros GI, Oros G, Güney Ö. Introduction in third-order fuzzy differential subordination. Hacettepe Journal of Mathematics and Statistics. 2024;53:1627–1641.
MLA Oros, Georgia Irina et al. “Introduction in Third-Order Fuzzy Differential Subordination”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 6, 2024, pp. 1627-41, doi:10.15672/hujms.1319541.
Vancouver Oros GI, Oros G, Güney Ö. Introduction in third-order fuzzy differential subordination. Hacettepe Journal of Mathematics and Statistics. 2024;53(6):1627-41.