Research Article
BibTex RIS Cite

On $k$-quasi-$(m,n,\mathbf{C})$-isosymmetric operators

Year 2024, , 1575 - 1587, 28.12.2024
https://doi.org/10.15672/hujms.1333379

Abstract

We study the set of $k$-quasi-$(m,n,\mathbf{C})$-isosymmetric operators. This family extends the set of $(m,,n,\mathbf{C})$-isosymmetric operators. In the present article, we give operator matrix representation of $k$-quasi-$(m,,n,\mathbf{C})$-isosymmetric operator in order to obtain some structural properties for such operators. We show that if ${\bf R}$ is a $k$-quasi-$(m,n,\mathbf{C})$ isosymmetric, then ${\bf R}^{q}$ is a $k$-quasi-$(m,n,\mathbf{C})$-isosymmetric operator. We show that the product of a $k_1$-quasi-$(m_1,n_1,\mathbf{C})$-isosymmetric and a $k_2$-quasi-$(m_2,n_2,\mathbf{C})$-isosymmetric which are $\mathbf{C}$-double commuting is a $\max\{k_1 ,k_2\}$-quasi-$(m_1+m_2 - 1,n_1+n_2-1, \mathbf{C})$-isosymmetry under suitable conditions. In particular, we prove the stability of perturbation of $k$-quasi-$(m,n, \mathbf{C})$-isosymmetric operator by a nilpotent operator of order $p$ under suitable conditions. Moreover, we give some results about the joint approximate spectrum of a $k$-quasi-$(m,n,\mathbf{C})$-isosymmetric operator.

Supporting Institution

the Deanship of Scientific Research at Jouf University

Project Number

(DSR-2021-03-0337)

References

  • [1] A. Abeer, O.A. Mahmoud Sid Ahmed and B.A. Farsin, n-quasi-m-complex symmetric operators, Symmetry 15 (9), 1662, 2023.
  • [2] J. Agler and M. Stankus, m-Isometric transformations of Hilbert space I, Integral Equ. Oper. Theory, 21, 383–429, 1995.
  • [3] J. Agler and M. Stankus, m-Isometric transformations of Hilbert space. II. Integral Equ. Oper. Theory, 23 (1), 1–48, 1995.
  • [4] J. Agler and M. Stankus, m-Isometric transformations of Hilbert space. III. Integr. Equat. Oper. Theory, 24 (4), 379–421, 1996.
  • [5] P. Aiena, F. Burderi and S. Triolo, Local Spectral Properties Under Conjugations, Mediterr. J. Math. 18:89, 2021.
  • [6] T. Bermúdez, A. Martinón, V. Müller and J.A. Noda, Perturbation of m-isometries by nilpotent operators, Abstr. Appl. Anal. 2014, Article ID 745479, 2014.
  • [7] T. Bermúdez, A. Martinón and E. Negrín, Weighted shift operators which are misometries, Integral Equ. Oper. Theory. 68 (3), 301–312, 2010.
  • [8] M. Ch¯o, O.B. El Moctar, O.A. Mahmoud Sid Ahmed, $(n_1,\cdots, n_p)$-quasi-m-isometric commuting tuple of operators on a Hilbert space, Ann. Funct. Anal. 12:4, 2021.
  • [9] M. Ch¯o, E. Ko and J. E. Lee, On $(m, C)$-Isometric Operators, Complex Anal. Oper. Theory 10, 1679–1694, 2016.
  • [10] M. Ch¯o, E. Ko and J.E. Lee, On m-complex symmetric operators, Mediterr. J. Math. 13 (4), 2025–2038, 2016.
  • [11] M. Ch¯o, E. Ko and J.E. Lee, $(\infty,C)$-isometric operators, Oper. Matrices, 11 (3), 793–806, 2017.
  • [12] M. Ch¯o, E. Ko, and J.E. Lee, On Operators T Cmmuting with CTC where C is a conjugation. Bull. Korean Math. Soc. 57 (1), 69–79, 2020.
  • [13] M. Ch¯o, E. Ko and J.E. Lee, Properties of m-complex symmetric operators, Stud. Univ. Babes-Bolyai Math. 62 (2), 233–248, 2017.
  • [14] M. Ch¯o, J.E. Lee, T. Prasad and K. Tanahashi, Complex isosymmetric operators, Adv. Oper. Theory 3 (3), 620–631, 2018.
  • [15] O.B. El Moktar, M. Guesba and O.A. Mahmoud Sid Ahmed, n-Quasi-$(A, m)$- Isometrics operators on a Hilbert space, Bull. Math. Anal. App. 12 (5), 8–26, 2020.
  • [16] S.R. Garcia, E. Prodan and M. Putinar, Mathematical and physical aspects of complex symmetric operators, J. Phys. A: Math. Theory 47, 353001, 2014.
  • [17] J. Gleason and S. Richter, m-Isometric Commuting Tuples of Operators on a Hilbert Space, Integral Equ. Oper. Theory, 56 (2), 181–196, 2006.
  • [18] C. Gu, Examples of m-isometric tuples of operators on a Hilbert spaces, J. Korean Math. Soc. 55 (1), 225–251, 2020.
  • [19] K. Hedayatian and A.M. Moghaddam, Some properties of the spherical m-isometries, J. Operat. Theor. 79, 55–77, 2018.
  • [20] K.B. Laursen and M. M. Neumann,An Introduction to Local Spectral Theory, London Math. Soc. Monographs 20, Clarendon Press, Oxford, 2000.
  • [21] O.A. Mahmoud Sid Ahmed, M. Ch¯o and J.E. Lee, On (m,C)-Isometric Commuting Tuples of Operators on a Hilbert Space, Results Math. 73:51, 2018.
  • [22] O.A. Mahmoud Sid Ahmed, M. Ch¯o and J.E. Lee, On n-quasi-(m,C)-isomtric operators, Linear Multilinear Algebra 68 (5), 1001–1020, 2020.
  • [23] O.A. Mahmoud Sid Ahmed, B. El Moctar, H. Jah and S. Maawiya, Structure of k- Quasi-(m, n)-Isosymmetric Operators, J. Math. 2022, Article ID 8377463, 13 pages, 2022.
  • [24] O.A. Mahmoud Sid Ahmed, A. Saddi and K. Gherairi, Some results on higher orders quasi-isometries. Hacet. J. Math. Stat. 49 (4), 1315–1333, 2020.
  • [25] S. Mecheri and O.A. Mahmoud Sid Ahmed, Some classes of operators related to misometries, Oper. and Matrices. Volume 14, Number 1 (2020), 145-157.
  • [26] S. Mecheri and T. Prasad, On n-quasi-m-isometric operators, Asian-Eur. J. Math. 9, 2016.
  • [27] A.M. Moghaddam and K. Hedayatian, On the dynamics of the d-tuples of misometries, Rocky Mountain J. Math. 49, 283–305, 2019.
  • [28] M.A. Rosenblum, On the operator equation $BX-XA = Q$, Duke Math. J. 23, 263–269, 1956.
  • [29] M. Stankus, Isosymmetric linear transformations on complex Hilbert space, Ph.D. Thesis, University of California, San Diego, 1993.
  • [30] M. Stankus, m-Isometries, n-symmetries and other linear transformations which are hereditary roots, Integr. Equat. Oper. Theory, 75, 301–321, 2013.
Year 2024, , 1575 - 1587, 28.12.2024
https://doi.org/10.15672/hujms.1333379

Abstract

Project Number

(DSR-2021-03-0337)

References

  • [1] A. Abeer, O.A. Mahmoud Sid Ahmed and B.A. Farsin, n-quasi-m-complex symmetric operators, Symmetry 15 (9), 1662, 2023.
  • [2] J. Agler and M. Stankus, m-Isometric transformations of Hilbert space I, Integral Equ. Oper. Theory, 21, 383–429, 1995.
  • [3] J. Agler and M. Stankus, m-Isometric transformations of Hilbert space. II. Integral Equ. Oper. Theory, 23 (1), 1–48, 1995.
  • [4] J. Agler and M. Stankus, m-Isometric transformations of Hilbert space. III. Integr. Equat. Oper. Theory, 24 (4), 379–421, 1996.
  • [5] P. Aiena, F. Burderi and S. Triolo, Local Spectral Properties Under Conjugations, Mediterr. J. Math. 18:89, 2021.
  • [6] T. Bermúdez, A. Martinón, V. Müller and J.A. Noda, Perturbation of m-isometries by nilpotent operators, Abstr. Appl. Anal. 2014, Article ID 745479, 2014.
  • [7] T. Bermúdez, A. Martinón and E. Negrín, Weighted shift operators which are misometries, Integral Equ. Oper. Theory. 68 (3), 301–312, 2010.
  • [8] M. Ch¯o, O.B. El Moctar, O.A. Mahmoud Sid Ahmed, $(n_1,\cdots, n_p)$-quasi-m-isometric commuting tuple of operators on a Hilbert space, Ann. Funct. Anal. 12:4, 2021.
  • [9] M. Ch¯o, E. Ko and J. E. Lee, On $(m, C)$-Isometric Operators, Complex Anal. Oper. Theory 10, 1679–1694, 2016.
  • [10] M. Ch¯o, E. Ko and J.E. Lee, On m-complex symmetric operators, Mediterr. J. Math. 13 (4), 2025–2038, 2016.
  • [11] M. Ch¯o, E. Ko and J.E. Lee, $(\infty,C)$-isometric operators, Oper. Matrices, 11 (3), 793–806, 2017.
  • [12] M. Ch¯o, E. Ko, and J.E. Lee, On Operators T Cmmuting with CTC where C is a conjugation. Bull. Korean Math. Soc. 57 (1), 69–79, 2020.
  • [13] M. Ch¯o, E. Ko and J.E. Lee, Properties of m-complex symmetric operators, Stud. Univ. Babes-Bolyai Math. 62 (2), 233–248, 2017.
  • [14] M. Ch¯o, J.E. Lee, T. Prasad and K. Tanahashi, Complex isosymmetric operators, Adv. Oper. Theory 3 (3), 620–631, 2018.
  • [15] O.B. El Moktar, M. Guesba and O.A. Mahmoud Sid Ahmed, n-Quasi-$(A, m)$- Isometrics operators on a Hilbert space, Bull. Math. Anal. App. 12 (5), 8–26, 2020.
  • [16] S.R. Garcia, E. Prodan and M. Putinar, Mathematical and physical aspects of complex symmetric operators, J. Phys. A: Math. Theory 47, 353001, 2014.
  • [17] J. Gleason and S. Richter, m-Isometric Commuting Tuples of Operators on a Hilbert Space, Integral Equ. Oper. Theory, 56 (2), 181–196, 2006.
  • [18] C. Gu, Examples of m-isometric tuples of operators on a Hilbert spaces, J. Korean Math. Soc. 55 (1), 225–251, 2020.
  • [19] K. Hedayatian and A.M. Moghaddam, Some properties of the spherical m-isometries, J. Operat. Theor. 79, 55–77, 2018.
  • [20] K.B. Laursen and M. M. Neumann,An Introduction to Local Spectral Theory, London Math. Soc. Monographs 20, Clarendon Press, Oxford, 2000.
  • [21] O.A. Mahmoud Sid Ahmed, M. Ch¯o and J.E. Lee, On (m,C)-Isometric Commuting Tuples of Operators on a Hilbert Space, Results Math. 73:51, 2018.
  • [22] O.A. Mahmoud Sid Ahmed, M. Ch¯o and J.E. Lee, On n-quasi-(m,C)-isomtric operators, Linear Multilinear Algebra 68 (5), 1001–1020, 2020.
  • [23] O.A. Mahmoud Sid Ahmed, B. El Moctar, H. Jah and S. Maawiya, Structure of k- Quasi-(m, n)-Isosymmetric Operators, J. Math. 2022, Article ID 8377463, 13 pages, 2022.
  • [24] O.A. Mahmoud Sid Ahmed, A. Saddi and K. Gherairi, Some results on higher orders quasi-isometries. Hacet. J. Math. Stat. 49 (4), 1315–1333, 2020.
  • [25] S. Mecheri and O.A. Mahmoud Sid Ahmed, Some classes of operators related to misometries, Oper. and Matrices. Volume 14, Number 1 (2020), 145-157.
  • [26] S. Mecheri and T. Prasad, On n-quasi-m-isometric operators, Asian-Eur. J. Math. 9, 2016.
  • [27] A.M. Moghaddam and K. Hedayatian, On the dynamics of the d-tuples of misometries, Rocky Mountain J. Math. 49, 283–305, 2019.
  • [28] M.A. Rosenblum, On the operator equation $BX-XA = Q$, Duke Math. J. 23, 263–269, 1956.
  • [29] M. Stankus, Isosymmetric linear transformations on complex Hilbert space, Ph.D. Thesis, University of California, San Diego, 1993.
  • [30] M. Stankus, m-Isometries, n-symmetries and other linear transformations which are hereditary roots, Integr. Equat. Oper. Theory, 75, 301–321, 2013.
There are 30 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Mathematics
Authors

Khadija Gherairi 0000-0002-5269-8186

Nouf Maqbul Saqer Alruwaili 0009-0009-1512-0631

Sid Ahmed Ould Ahmedmahmoud 0000-0002-6891-7849

Project Number (DSR-2021-03-0337)
Early Pub Date April 14, 2024
Publication Date December 28, 2024
Published in Issue Year 2024

Cite

APA Gherairi, K., Maqbul Saqer Alruwaili, N., & Ould Ahmedmahmoud, S. A. (2024). On $k$-quasi-$(m,n,\mathbf{C})$-isosymmetric operators. Hacettepe Journal of Mathematics and Statistics, 53(6), 1575-1587. https://doi.org/10.15672/hujms.1333379
AMA Gherairi K, Maqbul Saqer Alruwaili N, Ould Ahmedmahmoud SA. On $k$-quasi-$(m,n,\mathbf{C})$-isosymmetric operators. Hacettepe Journal of Mathematics and Statistics. December 2024;53(6):1575-1587. doi:10.15672/hujms.1333379
Chicago Gherairi, Khadija, Nouf Maqbul Saqer Alruwaili, and Sid Ahmed Ould Ahmedmahmoud. “On $k$-Quasi-$(m,n,\mathbf{C})$-Isosymmetric Operators”. Hacettepe Journal of Mathematics and Statistics 53, no. 6 (December 2024): 1575-87. https://doi.org/10.15672/hujms.1333379.
EndNote Gherairi K, Maqbul Saqer Alruwaili N, Ould Ahmedmahmoud SA (December 1, 2024) On $k$-quasi-$(m,n,\mathbf{C})$-isosymmetric operators. Hacettepe Journal of Mathematics and Statistics 53 6 1575–1587.
IEEE K. Gherairi, N. Maqbul Saqer Alruwaili, and S. A. Ould Ahmedmahmoud, “On $k$-quasi-$(m,n,\mathbf{C})$-isosymmetric operators”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 6, pp. 1575–1587, 2024, doi: 10.15672/hujms.1333379.
ISNAD Gherairi, Khadija et al. “On $k$-Quasi-$(m,n,\mathbf{C})$-Isosymmetric Operators”. Hacettepe Journal of Mathematics and Statistics 53/6 (December 2024), 1575-1587. https://doi.org/10.15672/hujms.1333379.
JAMA Gherairi K, Maqbul Saqer Alruwaili N, Ould Ahmedmahmoud SA. On $k$-quasi-$(m,n,\mathbf{C})$-isosymmetric operators. Hacettepe Journal of Mathematics and Statistics. 2024;53:1575–1587.
MLA Gherairi, Khadija et al. “On $k$-Quasi-$(m,n,\mathbf{C})$-Isosymmetric Operators”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 6, 2024, pp. 1575-87, doi:10.15672/hujms.1333379.
Vancouver Gherairi K, Maqbul Saqer Alruwaili N, Ould Ahmedmahmoud SA. On $k$-quasi-$(m,n,\mathbf{C})$-isosymmetric operators. Hacettepe Journal of Mathematics and Statistics. 2024;53(6):1575-87.