Research Article
BibTex RIS Cite

A new class of ideal Connes amenability

Year 2024, , 1686 - 1697, 28.12.2024
https://doi.org/10.15672/hujms.1372448

Abstract

In this paper, we introduce the notion of $\sigma-$ideally Connes amenable for dual Banach algebras and give some hereditary properties for this new notion. We also investigate $\sigma-$ideally Connes amenability of $\ell^1(G, \omega)$. We show that if $\omega$ is a diagonally bounded weight function on discrete group $G$ and $\sigma$ is isometrically isomorphism of $\ell^1(G, \omega)$, then $\ell^1(G, \omega)$ is $\sigma-$ideally Connes amenable and so it is ideally Connes amenable.

References

  • [1] U. Bader, T. Gelander and N. Monod, A fixed point theorem for $L^1$ spaces, Invent. Math. 189 (1), 143-148, 2012.
  • [2] A. Connes, Classification of injective factors. Cases$II_{1},$ $II_{\infty },$ $III_{\lambda },$ $\lambda \not=1$, Ann. of Math. 104 (1), 73-115, 1976.
  • [3] A. Connes, On the cohomology of operator algebras, J. Functional Analysis 28 (2), 248-253, 1978.
  • [4] A. Y. Helemskii, Homological essence of amenability in the sense of A. Connes: the injectivity of the predual bimodule, (Russian); translated from Mat. Sb. 180 (12) (1989), 1680–1690, 1728 Math. USSR-Sb. 68 (2), 555-566, 1991.
  • [5] B. E. Johnson, Cohomology in Banach algebras, Memoirs of the American Mathematical Society 127, American Mathematical Society, Providence, R.I., 1972.
  • [6] B. E. Johnson, R.V. Kadison and J. R. Ringrose, Cohomology of operator algebras, III. Reduction to normal cohomology, Bull. Soc. Math. France 100, 73-96, 1972.
  • [7] A. Minapoor, A. Bodaghi and D. Ebrahimi Bagha, Ideal Connes-amenability of dual Banach algebras, Mediterr. J. Math. 14 (4), Paper No. 174, 12 pp, 2017.
  • [8] A. Minapoor, A. Bodaghi and D. Ebrahimi Bagha, Derivations on the tensor product of Banach algebras, J. Math. Ext. 11, 117-125, 2017.
  • [9] A. Minapoor and O.T. Mewomo, Zero set of ideals in Beurling algebras, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 82 (3), 129-138, 2020.
  • [10] A. Minapoor, Approximate ideal Connes amenability of dual Banach algebras and ideal Connes amenability of discrete Beurling algebras, Eurasian Math. J. 11 (2), 72-85, 2020.
  • [11] A. Minapoor, Ideal Connes amenability of $l^1$-Munn algebras and its application to semigroup algebras, Semigroup Forum 102 (3), 756-764, 2021.
  • [12] A. Minapoor and A. Zivari-Kazempour, Ideal Connes-amenability of certain dual Banach algebras, Complex. Anal. Oper. Th. 17, 27, 2023.
  • [13] M. Mirzavaziri and M. S. Moslehian, $\sigma$-amenability of Banach algebras, Southeast Asian Bull. Math. 33 (1), 89-99, 2009.
  • [14] M. Momeni, T. Yazdanpanah and M. R. Mardanbeigi, $\sigma$-approximately contractible Banach algebras, Abstr. Appl. Anal. 2012, Art. ID 653140, 2012.
  • [15] V. Runde, Lectures on Amenability, Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 2002.
  • [16] A. Teymouri, A. Bodaghi and D. E. Bagha, Derivations into annihilators of the ideals of Banach algebras, Demonstr. Math. 52 (1), 20–28, 2019.
  • [17] S. Zadeh, Isometric isomorphisms of Beurling algebras, J. Math. Anal. Appl. 438 (1), 1-13, 2016.
  • [18] Y. Zhang, Weak amenability of a class of Banach algebras, Canad. Math. Bull. 44, 504–508, 2001.
Year 2024, , 1686 - 1697, 28.12.2024
https://doi.org/10.15672/hujms.1372448

Abstract

References

  • [1] U. Bader, T. Gelander and N. Monod, A fixed point theorem for $L^1$ spaces, Invent. Math. 189 (1), 143-148, 2012.
  • [2] A. Connes, Classification of injective factors. Cases$II_{1},$ $II_{\infty },$ $III_{\lambda },$ $\lambda \not=1$, Ann. of Math. 104 (1), 73-115, 1976.
  • [3] A. Connes, On the cohomology of operator algebras, J. Functional Analysis 28 (2), 248-253, 1978.
  • [4] A. Y. Helemskii, Homological essence of amenability in the sense of A. Connes: the injectivity of the predual bimodule, (Russian); translated from Mat. Sb. 180 (12) (1989), 1680–1690, 1728 Math. USSR-Sb. 68 (2), 555-566, 1991.
  • [5] B. E. Johnson, Cohomology in Banach algebras, Memoirs of the American Mathematical Society 127, American Mathematical Society, Providence, R.I., 1972.
  • [6] B. E. Johnson, R.V. Kadison and J. R. Ringrose, Cohomology of operator algebras, III. Reduction to normal cohomology, Bull. Soc. Math. France 100, 73-96, 1972.
  • [7] A. Minapoor, A. Bodaghi and D. Ebrahimi Bagha, Ideal Connes-amenability of dual Banach algebras, Mediterr. J. Math. 14 (4), Paper No. 174, 12 pp, 2017.
  • [8] A. Minapoor, A. Bodaghi and D. Ebrahimi Bagha, Derivations on the tensor product of Banach algebras, J. Math. Ext. 11, 117-125, 2017.
  • [9] A. Minapoor and O.T. Mewomo, Zero set of ideals in Beurling algebras, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 82 (3), 129-138, 2020.
  • [10] A. Minapoor, Approximate ideal Connes amenability of dual Banach algebras and ideal Connes amenability of discrete Beurling algebras, Eurasian Math. J. 11 (2), 72-85, 2020.
  • [11] A. Minapoor, Ideal Connes amenability of $l^1$-Munn algebras and its application to semigroup algebras, Semigroup Forum 102 (3), 756-764, 2021.
  • [12] A. Minapoor and A. Zivari-Kazempour, Ideal Connes-amenability of certain dual Banach algebras, Complex. Anal. Oper. Th. 17, 27, 2023.
  • [13] M. Mirzavaziri and M. S. Moslehian, $\sigma$-amenability of Banach algebras, Southeast Asian Bull. Math. 33 (1), 89-99, 2009.
  • [14] M. Momeni, T. Yazdanpanah and M. R. Mardanbeigi, $\sigma$-approximately contractible Banach algebras, Abstr. Appl. Anal. 2012, Art. ID 653140, 2012.
  • [15] V. Runde, Lectures on Amenability, Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 2002.
  • [16] A. Teymouri, A. Bodaghi and D. E. Bagha, Derivations into annihilators of the ideals of Banach algebras, Demonstr. Math. 52 (1), 20–28, 2019.
  • [17] S. Zadeh, Isometric isomorphisms of Beurling algebras, J. Math. Anal. Appl. 438 (1), 1-13, 2016.
  • [18] Y. Zhang, Weak amenability of a class of Banach algebras, Canad. Math. Bull. 44, 504–508, 2001.
There are 18 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Mathematics
Authors

Ahmad Minapoor 0000-0002-1181-3328

Ali Rejali 0000-0001-7270-665X

Mohammad Javad Mehdıpour 0000-0002-1266-3392

Early Pub Date April 14, 2024
Publication Date December 28, 2024
Published in Issue Year 2024

Cite

APA Minapoor, A., Rejali, A., & Mehdıpour, M. J. (2024). A new class of ideal Connes amenability. Hacettepe Journal of Mathematics and Statistics, 53(6), 1686-1697. https://doi.org/10.15672/hujms.1372448
AMA Minapoor A, Rejali A, Mehdıpour MJ. A new class of ideal Connes amenability. Hacettepe Journal of Mathematics and Statistics. December 2024;53(6):1686-1697. doi:10.15672/hujms.1372448
Chicago Minapoor, Ahmad, Ali Rejali, and Mohammad Javad Mehdıpour. “A New Class of Ideal Connes Amenability”. Hacettepe Journal of Mathematics and Statistics 53, no. 6 (December 2024): 1686-97. https://doi.org/10.15672/hujms.1372448.
EndNote Minapoor A, Rejali A, Mehdıpour MJ (December 1, 2024) A new class of ideal Connes amenability. Hacettepe Journal of Mathematics and Statistics 53 6 1686–1697.
IEEE A. Minapoor, A. Rejali, and M. J. Mehdıpour, “A new class of ideal Connes amenability”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 6, pp. 1686–1697, 2024, doi: 10.15672/hujms.1372448.
ISNAD Minapoor, Ahmad et al. “A New Class of Ideal Connes Amenability”. Hacettepe Journal of Mathematics and Statistics 53/6 (December 2024), 1686-1697. https://doi.org/10.15672/hujms.1372448.
JAMA Minapoor A, Rejali A, Mehdıpour MJ. A new class of ideal Connes amenability. Hacettepe Journal of Mathematics and Statistics. 2024;53:1686–1697.
MLA Minapoor, Ahmad et al. “A New Class of Ideal Connes Amenability”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 6, 2024, pp. 1686-97, doi:10.15672/hujms.1372448.
Vancouver Minapoor A, Rejali A, Mehdıpour MJ. A new class of ideal Connes amenability. Hacettepe Journal of Mathematics and Statistics. 2024;53(6):1686-97.