Research Article
BibTex RIS Cite

A-optimal design for cubic model without a 3-way effect for mixture experiment

Year 2024, , 1759 - 1773, 28.12.2024
https://doi.org/10.15672/hujms.1374974

Abstract

In this article, we obtain a saturated A-optimal design for the cubic model without a 3-way effect for mixture experiment and get a general formula of the weights. The necessary and sufficient condition of the A-optimality criterion is confirmed by using the corresponding equivalence theorem.

References

  • [1] M.L. Aggrawal, P. Singh and M.K. Panda, A-optimal designs for an additive cubic model, Stat. Probab. Lett. 81 (2), 259-266, 2011.
  • [2] J.A. Cornell, Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data, John Wiley & Sons, New York, 2002.
  • [3] R.H. Farrell, J. Kiefer and J. Walbran, Optimum multivariate designs, Proc. 5th Berkeley Symp. Math. Stat. Probab. 1, 113-139, University of California Press, 1967.
  • [4] V.V. Fedorov, Design of experiments for linear optimality criteria, Theory Probab. Appl. 16 (1), 189-195, 1971.
  • [5] P. Goos and M. Vandebroek, D-optimal response surface designs in the presence of random block effects, Comput. Stat. Data Anal. 37 (4), 433-453, 2001.
  • [6] J.W. Gorman and J. Hinman, E Simplex lattice designs for multicomponent systems, Technometrics 4 (4), 463-487, 1962.
  • [7] J. Kiefer, Optimal designs in regression problems II, Ann. Math. Stat. 32 (1), 298-325, 1961.
  • [8] J. Kiefer, General equivalence theory for optimum designs (approximate theory), Ann. Statist. 2, 849-879, 1974.
  • [9] T. Klein, Invariant symmetric block matrices for the design of mixture experiments, Linear Algebra Appl. 388, 261-278, 2004.
  • [10] Y.B. Lim, D-optimal design for cubic polynomial regression on the q-simplex, J. Stat. Plan. Infer. 25 (2), 141-152, 1990.
  • [11] F. Mikaeili, D-optimum design for cubic without 3-way effect on the simplex, J. Stat. Plan. Infer. 21 (1), 107-115, 1989.
  • [12] F. Mikaeili, D-optimum design for full cubic on q-simplex, J. Stat. Plan. Infer. 35 (1), 121-130, 1993.
  • [13] M. Pal and N.K. Mandal, Optimum designs for parameter estimation in mixture experiments with group synergism, Commun. Stat. Theory Methods 50 (9), 2001- 2014, 2021.
  • [14] M.K. Panda, R-optimal designs for canonical polynomial models with mixture experiments, Calcutta Stat. Assoc. Bull. 73 (2), 146-161, 2021.
  • [15] M.K. Panda and R.P. Sahoo, D-optimal designs for Scheffès quadratic mixture model with spline involving two insensitive components, Int. J. Stat. Reliab. Eng. 9 (1), 108-117, 2022a.
  • [16] M.K. Panda and R.P. Sahoo, A-optimal designs for cubic polynomial models with mixture experiments in three components, Stat. Appl. 20 (2), 41-55, 2022b.
  • [17] M.K. Panda and R.P. Sahoo, R-optimal designs for linear log contrast model with mixture experiments, Commun. Stat. Theory Methods 53 (7), 2355-2368, 2024.
  • [18] H. Scheffé, Experiments with mixtures, J. R. Stat. Soc. Ser. B. 20 (2), 344-360, 1958.
  • [19] P. Singh and M.K. Panda, Optimal design for second degree K-model for mixture experiments based on weighted simplex centroid design, Metron 69 (3), 251-263, 2011.
  • [20] X. Zhu and H. Hao, A-optimal design for the special cubic mixture model, Commun. Stat. Theory Methods 53 (3), 1081-1090, 2024.
Year 2024, , 1759 - 1773, 28.12.2024
https://doi.org/10.15672/hujms.1374974

Abstract

References

  • [1] M.L. Aggrawal, P. Singh and M.K. Panda, A-optimal designs for an additive cubic model, Stat. Probab. Lett. 81 (2), 259-266, 2011.
  • [2] J.A. Cornell, Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data, John Wiley & Sons, New York, 2002.
  • [3] R.H. Farrell, J. Kiefer and J. Walbran, Optimum multivariate designs, Proc. 5th Berkeley Symp. Math. Stat. Probab. 1, 113-139, University of California Press, 1967.
  • [4] V.V. Fedorov, Design of experiments for linear optimality criteria, Theory Probab. Appl. 16 (1), 189-195, 1971.
  • [5] P. Goos and M. Vandebroek, D-optimal response surface designs in the presence of random block effects, Comput. Stat. Data Anal. 37 (4), 433-453, 2001.
  • [6] J.W. Gorman and J. Hinman, E Simplex lattice designs for multicomponent systems, Technometrics 4 (4), 463-487, 1962.
  • [7] J. Kiefer, Optimal designs in regression problems II, Ann. Math. Stat. 32 (1), 298-325, 1961.
  • [8] J. Kiefer, General equivalence theory for optimum designs (approximate theory), Ann. Statist. 2, 849-879, 1974.
  • [9] T. Klein, Invariant symmetric block matrices for the design of mixture experiments, Linear Algebra Appl. 388, 261-278, 2004.
  • [10] Y.B. Lim, D-optimal design for cubic polynomial regression on the q-simplex, J. Stat. Plan. Infer. 25 (2), 141-152, 1990.
  • [11] F. Mikaeili, D-optimum design for cubic without 3-way effect on the simplex, J. Stat. Plan. Infer. 21 (1), 107-115, 1989.
  • [12] F. Mikaeili, D-optimum design for full cubic on q-simplex, J. Stat. Plan. Infer. 35 (1), 121-130, 1993.
  • [13] M. Pal and N.K. Mandal, Optimum designs for parameter estimation in mixture experiments with group synergism, Commun. Stat. Theory Methods 50 (9), 2001- 2014, 2021.
  • [14] M.K. Panda, R-optimal designs for canonical polynomial models with mixture experiments, Calcutta Stat. Assoc. Bull. 73 (2), 146-161, 2021.
  • [15] M.K. Panda and R.P. Sahoo, D-optimal designs for Scheffès quadratic mixture model with spline involving two insensitive components, Int. J. Stat. Reliab. Eng. 9 (1), 108-117, 2022a.
  • [16] M.K. Panda and R.P. Sahoo, A-optimal designs for cubic polynomial models with mixture experiments in three components, Stat. Appl. 20 (2), 41-55, 2022b.
  • [17] M.K. Panda and R.P. Sahoo, R-optimal designs for linear log contrast model with mixture experiments, Commun. Stat. Theory Methods 53 (7), 2355-2368, 2024.
  • [18] H. Scheffé, Experiments with mixtures, J. R. Stat. Soc. Ser. B. 20 (2), 344-360, 1958.
  • [19] P. Singh and M.K. Panda, Optimal design for second degree K-model for mixture experiments based on weighted simplex centroid design, Metron 69 (3), 251-263, 2011.
  • [20] X. Zhu and H. Hao, A-optimal design for the special cubic mixture model, Commun. Stat. Theory Methods 53 (3), 1081-1090, 2024.
There are 20 citations in total.

Details

Primary Language English
Subjects Statistical Experiment Design
Journal Section Statistics
Authors

Mahesh Kumar Panda 0000-0002-1459-3463

Early Pub Date November 19, 2024
Publication Date December 28, 2024
Submission Date October 12, 2023
Acceptance Date September 29, 2024
Published in Issue Year 2024

Cite

APA Panda, M. K. (2024). A-optimal design for cubic model without a 3-way effect for mixture experiment. Hacettepe Journal of Mathematics and Statistics, 53(6), 1759-1773. https://doi.org/10.15672/hujms.1374974
AMA Panda MK. A-optimal design for cubic model without a 3-way effect for mixture experiment. Hacettepe Journal of Mathematics and Statistics. December 2024;53(6):1759-1773. doi:10.15672/hujms.1374974
Chicago Panda, Mahesh Kumar. “A-Optimal Design for Cubic Model Without a 3-Way Effect for Mixture Experiment”. Hacettepe Journal of Mathematics and Statistics 53, no. 6 (December 2024): 1759-73. https://doi.org/10.15672/hujms.1374974.
EndNote Panda MK (December 1, 2024) A-optimal design for cubic model without a 3-way effect for mixture experiment. Hacettepe Journal of Mathematics and Statistics 53 6 1759–1773.
IEEE M. K. Panda, “A-optimal design for cubic model without a 3-way effect for mixture experiment”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 6, pp. 1759–1773, 2024, doi: 10.15672/hujms.1374974.
ISNAD Panda, Mahesh Kumar. “A-Optimal Design for Cubic Model Without a 3-Way Effect for Mixture Experiment”. Hacettepe Journal of Mathematics and Statistics 53/6 (December 2024), 1759-1773. https://doi.org/10.15672/hujms.1374974.
JAMA Panda MK. A-optimal design for cubic model without a 3-way effect for mixture experiment. Hacettepe Journal of Mathematics and Statistics. 2024;53:1759–1773.
MLA Panda, Mahesh Kumar. “A-Optimal Design for Cubic Model Without a 3-Way Effect for Mixture Experiment”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 6, 2024, pp. 1759-73, doi:10.15672/hujms.1374974.
Vancouver Panda MK. A-optimal design for cubic model without a 3-way effect for mixture experiment. Hacettepe Journal of Mathematics and Statistics. 2024;53(6):1759-73.