Pseudo-differential operators associated with the gyrator transform
Year 2025,
Volume: 54 Issue: 4, 1426 - 1441, 29.08.2025
Kanailal Mahato
,
Shubhanshu Arya
,
Akhilesh Prasad
Abstract
In this present work, a brief introduction to the gyrator transform and its fundamental properties are given. {The gyrator transform of tempered distributions is being discussed}. This article made further discussion on the boundedness properties of pseudo-differential operators associated with the gyrator transform on Schwartz space as well as on Sobolev space.
Ethical Statement
Not applicable
Supporting Institution
Not applicable
References
-
[1] L.B. Almeida, The fractional Fourier transform and time-frequency representations,
IEEE Trans. Signal Process. 42, 3084-3091, 1994.
-
[2] H. Dai, Z. Zheng and W. Wang, A new fractional wavelet transform, Commun. Nonlinear
Sci. Numer. Simul. 44, 19-36, 2017.
-
[3] A. Friedman, Generalized functions and partial differential equations, Englewood
Cliffs NJ, Prentice Hall, 1963.
-
[4] L. Hörmander, The Analysis of Linear Partial Differential Operators, (I-III), Berlin,
Springer, (1983-1985), 2007.
-
[5] T. Kagawa and T. Suzuki, Characterizations of the gyrator transform via the fractional
Fourier transform, Integral Transforms Spec. Funct. 34 (5), 399-413, 2023.
-
[6] K. Mahato and S. Arya, Gyrator potential operator and Lp−Sobolev spaces involving
Gyrator transform, Integral Transforms Spec. Funct. Accepted, 2024.
-
[7] D. Mendlovic and H.M. Ozaktas, Fractional Fourier transforms and their optical
implementation I, J. Opt. Soc. Amer. A. 10, 1875-1881, 1993.
-
[8] V. Namias, The fractional order Fourier transform and its applications to quantum
mechanics, IMA J. Appl. Math. 25, 241-261, 1980.
-
[9] H.M. Ozaktas, Z. Zalevsky and M. Kutay, The fractional Fourier transform with
applications in optics and signal processing, New York, John Wiley, 2001.
-
[10] R.S. Pathak, A. Prasad and M. Kumar, Fractional Fourier transform of tempered distributions
and generalized Pseudo-differential Operators, J. Pseudo-Diff. Oper. Appl.
3 (2), 239-254, 2012.
-
[11] A. Prasad and M. Kumar, Product of two generalized Pseudo-differential Operators
involving fractional Fourier transform, J. Pseudo-Diff. Oper. Appl. 2 (3), 355-365,
2011.
-
[12] A. Prasad and M. Kumar, Boundedness of Pseudo-differential operator associated
with fractional Fourier transform, Proc. Natl. Acad. Sci. India Sect. A .Phys. Sci. 84
(4), 549-554, 2014.
-
[13] A. Prasad and P. Kumar, Pseudo-differential operator associated with the fractional
Fourier transform, Math. Commun. 21, 115-126, 2016.
-
[14] A. Prasad, S. Manna and A. Mahato, The generalized continuous wavelet transform
associated with the fractional Fourier transform, J. Comput. Appl. Math. 259, 660-
671, 2014.
-
[15] L. Rodino, Linear Partial Differential Operators in Gevrey spaces, Singapore, World
Scientific, 1993.
-
[16] J.A. Rodrigo, T. Alieva and M.L. Calvo, Gyrator transform: properties and applications,
Opt. Express. 15 (5), 2190-2203, 2007.
-
[17] R. Simon and K.B. Wolf, Structure of the set of paraxial optical systems, J. Opt. Soc.
Am. 17 (2), 342-355, 2000.
-
[18] M.W. Wong, An Introduction to Pseudo-differential Operators, 2nd edn. Singapore,
World Scientific, 1999.
-
[19] S. Zaidman, Distributions and Pseudo-differential operators, Longman, Essex, 1991.
Year 2025,
Volume: 54 Issue: 4, 1426 - 1441, 29.08.2025
Kanailal Mahato
,
Shubhanshu Arya
,
Akhilesh Prasad
References
-
[1] L.B. Almeida, The fractional Fourier transform and time-frequency representations,
IEEE Trans. Signal Process. 42, 3084-3091, 1994.
-
[2] H. Dai, Z. Zheng and W. Wang, A new fractional wavelet transform, Commun. Nonlinear
Sci. Numer. Simul. 44, 19-36, 2017.
-
[3] A. Friedman, Generalized functions and partial differential equations, Englewood
Cliffs NJ, Prentice Hall, 1963.
-
[4] L. Hörmander, The Analysis of Linear Partial Differential Operators, (I-III), Berlin,
Springer, (1983-1985), 2007.
-
[5] T. Kagawa and T. Suzuki, Characterizations of the gyrator transform via the fractional
Fourier transform, Integral Transforms Spec. Funct. 34 (5), 399-413, 2023.
-
[6] K. Mahato and S. Arya, Gyrator potential operator and Lp−Sobolev spaces involving
Gyrator transform, Integral Transforms Spec. Funct. Accepted, 2024.
-
[7] D. Mendlovic and H.M. Ozaktas, Fractional Fourier transforms and their optical
implementation I, J. Opt. Soc. Amer. A. 10, 1875-1881, 1993.
-
[8] V. Namias, The fractional order Fourier transform and its applications to quantum
mechanics, IMA J. Appl. Math. 25, 241-261, 1980.
-
[9] H.M. Ozaktas, Z. Zalevsky and M. Kutay, The fractional Fourier transform with
applications in optics and signal processing, New York, John Wiley, 2001.
-
[10] R.S. Pathak, A. Prasad and M. Kumar, Fractional Fourier transform of tempered distributions
and generalized Pseudo-differential Operators, J. Pseudo-Diff. Oper. Appl.
3 (2), 239-254, 2012.
-
[11] A. Prasad and M. Kumar, Product of two generalized Pseudo-differential Operators
involving fractional Fourier transform, J. Pseudo-Diff. Oper. Appl. 2 (3), 355-365,
2011.
-
[12] A. Prasad and M. Kumar, Boundedness of Pseudo-differential operator associated
with fractional Fourier transform, Proc. Natl. Acad. Sci. India Sect. A .Phys. Sci. 84
(4), 549-554, 2014.
-
[13] A. Prasad and P. Kumar, Pseudo-differential operator associated with the fractional
Fourier transform, Math. Commun. 21, 115-126, 2016.
-
[14] A. Prasad, S. Manna and A. Mahato, The generalized continuous wavelet transform
associated with the fractional Fourier transform, J. Comput. Appl. Math. 259, 660-
671, 2014.
-
[15] L. Rodino, Linear Partial Differential Operators in Gevrey spaces, Singapore, World
Scientific, 1993.
-
[16] J.A. Rodrigo, T. Alieva and M.L. Calvo, Gyrator transform: properties and applications,
Opt. Express. 15 (5), 2190-2203, 2007.
-
[17] R. Simon and K.B. Wolf, Structure of the set of paraxial optical systems, J. Opt. Soc.
Am. 17 (2), 342-355, 2000.
-
[18] M.W. Wong, An Introduction to Pseudo-differential Operators, 2nd edn. Singapore,
World Scientific, 1999.
-
[19] S. Zaidman, Distributions and Pseudo-differential operators, Longman, Essex, 1991.