Research Article
BibTex RIS Cite

Pseudo-differential operators associated with the gyrator transform

Year 2025, Volume: 54 Issue: 4, 1426 - 1441, 29.08.2025
https://doi.org/10.15672/hujms.1471348

Abstract

In this present work, a brief introduction to the gyrator transform and its fundamental properties are given. {The gyrator transform of tempered distributions is being discussed}. This article made further discussion on the boundedness properties of pseudo-differential operators associated with the gyrator transform on Schwartz space as well as on Sobolev space.

Ethical Statement

Not applicable

Supporting Institution

Not applicable

References

  • [1] L.B. Almeida, The fractional Fourier transform and time-frequency representations, IEEE Trans. Signal Process. 42, 3084-3091, 1994.
  • [2] H. Dai, Z. Zheng and W. Wang, A new fractional wavelet transform, Commun. Nonlinear Sci. Numer. Simul. 44, 19-36, 2017.
  • [3] A. Friedman, Generalized functions and partial differential equations, Englewood Cliffs NJ, Prentice Hall, 1963.
  • [4] L. Hörmander, The Analysis of Linear Partial Differential Operators, (I-III), Berlin, Springer, (1983-1985), 2007.
  • [5] T. Kagawa and T. Suzuki, Characterizations of the gyrator transform via the fractional Fourier transform, Integral Transforms Spec. Funct. 34 (5), 399-413, 2023.
  • [6] K. Mahato and S. Arya, Gyrator potential operator and Lp−Sobolev spaces involving Gyrator transform, Integral Transforms Spec. Funct. Accepted, 2024.
  • [7] D. Mendlovic and H.M. Ozaktas, Fractional Fourier transforms and their optical implementation I, J. Opt. Soc. Amer. A. 10, 1875-1881, 1993.
  • [8] V. Namias, The fractional order Fourier transform and its applications to quantum mechanics, IMA J. Appl. Math. 25, 241-261, 1980.
  • [9] H.M. Ozaktas, Z. Zalevsky and M. Kutay, The fractional Fourier transform with applications in optics and signal processing, New York, John Wiley, 2001.
  • [10] R.S. Pathak, A. Prasad and M. Kumar, Fractional Fourier transform of tempered distributions and generalized Pseudo-differential Operators, J. Pseudo-Diff. Oper. Appl. 3 (2), 239-254, 2012.
  • [11] A. Prasad and M. Kumar, Product of two generalized Pseudo-differential Operators involving fractional Fourier transform, J. Pseudo-Diff. Oper. Appl. 2 (3), 355-365, 2011.
  • [12] A. Prasad and M. Kumar, Boundedness of Pseudo-differential operator associated with fractional Fourier transform, Proc. Natl. Acad. Sci. India Sect. A .Phys. Sci. 84 (4), 549-554, 2014.
  • [13] A. Prasad and P. Kumar, Pseudo-differential operator associated with the fractional Fourier transform, Math. Commun. 21, 115-126, 2016.
  • [14] A. Prasad, S. Manna and A. Mahato, The generalized continuous wavelet transform associated with the fractional Fourier transform, J. Comput. Appl. Math. 259, 660- 671, 2014.
  • [15] L. Rodino, Linear Partial Differential Operators in Gevrey spaces, Singapore, World Scientific, 1993.
  • [16] J.A. Rodrigo, T. Alieva and M.L. Calvo, Gyrator transform: properties and applications, Opt. Express. 15 (5), 2190-2203, 2007.
  • [17] R. Simon and K.B. Wolf, Structure of the set of paraxial optical systems, J. Opt. Soc. Am. 17 (2), 342-355, 2000.
  • [18] M.W. Wong, An Introduction to Pseudo-differential Operators, 2nd edn. Singapore, World Scientific, 1999.
  • [19] S. Zaidman, Distributions and Pseudo-differential operators, Longman, Essex, 1991.

Year 2025, Volume: 54 Issue: 4, 1426 - 1441, 29.08.2025
https://doi.org/10.15672/hujms.1471348

Abstract

References

  • [1] L.B. Almeida, The fractional Fourier transform and time-frequency representations, IEEE Trans. Signal Process. 42, 3084-3091, 1994.
  • [2] H. Dai, Z. Zheng and W. Wang, A new fractional wavelet transform, Commun. Nonlinear Sci. Numer. Simul. 44, 19-36, 2017.
  • [3] A. Friedman, Generalized functions and partial differential equations, Englewood Cliffs NJ, Prentice Hall, 1963.
  • [4] L. Hörmander, The Analysis of Linear Partial Differential Operators, (I-III), Berlin, Springer, (1983-1985), 2007.
  • [5] T. Kagawa and T. Suzuki, Characterizations of the gyrator transform via the fractional Fourier transform, Integral Transforms Spec. Funct. 34 (5), 399-413, 2023.
  • [6] K. Mahato and S. Arya, Gyrator potential operator and Lp−Sobolev spaces involving Gyrator transform, Integral Transforms Spec. Funct. Accepted, 2024.
  • [7] D. Mendlovic and H.M. Ozaktas, Fractional Fourier transforms and their optical implementation I, J. Opt. Soc. Amer. A. 10, 1875-1881, 1993.
  • [8] V. Namias, The fractional order Fourier transform and its applications to quantum mechanics, IMA J. Appl. Math. 25, 241-261, 1980.
  • [9] H.M. Ozaktas, Z. Zalevsky and M. Kutay, The fractional Fourier transform with applications in optics and signal processing, New York, John Wiley, 2001.
  • [10] R.S. Pathak, A. Prasad and M. Kumar, Fractional Fourier transform of tempered distributions and generalized Pseudo-differential Operators, J. Pseudo-Diff. Oper. Appl. 3 (2), 239-254, 2012.
  • [11] A. Prasad and M. Kumar, Product of two generalized Pseudo-differential Operators involving fractional Fourier transform, J. Pseudo-Diff. Oper. Appl. 2 (3), 355-365, 2011.
  • [12] A. Prasad and M. Kumar, Boundedness of Pseudo-differential operator associated with fractional Fourier transform, Proc. Natl. Acad. Sci. India Sect. A .Phys. Sci. 84 (4), 549-554, 2014.
  • [13] A. Prasad and P. Kumar, Pseudo-differential operator associated with the fractional Fourier transform, Math. Commun. 21, 115-126, 2016.
  • [14] A. Prasad, S. Manna and A. Mahato, The generalized continuous wavelet transform associated with the fractional Fourier transform, J. Comput. Appl. Math. 259, 660- 671, 2014.
  • [15] L. Rodino, Linear Partial Differential Operators in Gevrey spaces, Singapore, World Scientific, 1993.
  • [16] J.A. Rodrigo, T. Alieva and M.L. Calvo, Gyrator transform: properties and applications, Opt. Express. 15 (5), 2190-2203, 2007.
  • [17] R. Simon and K.B. Wolf, Structure of the set of paraxial optical systems, J. Opt. Soc. Am. 17 (2), 342-355, 2000.
  • [18] M.W. Wong, An Introduction to Pseudo-differential Operators, 2nd edn. Singapore, World Scientific, 1999.
  • [19] S. Zaidman, Distributions and Pseudo-differential operators, Longman, Essex, 1991.
There are 19 citations in total.

Details

Primary Language English
Subjects Lie Groups, Harmonic and Fourier Analysis, Operator Algebras and Functional Analysis
Journal Section Research Article
Authors

Kanailal Mahato 0000-0002-3519-2183

Shubhanshu Arya 0009-0003-0007-0068

Akhilesh Prasad 0000-0003-4715-5774

Early Pub Date January 27, 2025
Publication Date August 29, 2025
Submission Date April 25, 2024
Acceptance Date December 12, 2024
Published in Issue Year 2025 Volume: 54 Issue: 4

Cite

APA Mahato, K., Arya, S., & Prasad, A. (2025). Pseudo-differential operators associated with the gyrator transform. Hacettepe Journal of Mathematics and Statistics, 54(4), 1426-1441. https://doi.org/10.15672/hujms.1471348
AMA Mahato K, Arya S, Prasad A. Pseudo-differential operators associated with the gyrator transform. Hacettepe Journal of Mathematics and Statistics. August 2025;54(4):1426-1441. doi:10.15672/hujms.1471348
Chicago Mahato, Kanailal, Shubhanshu Arya, and Akhilesh Prasad. “Pseudo-Differential Operators Associated With the Gyrator Transform”. Hacettepe Journal of Mathematics and Statistics 54, no. 4 (August 2025): 1426-41. https://doi.org/10.15672/hujms.1471348.
EndNote Mahato K, Arya S, Prasad A (August 1, 2025) Pseudo-differential operators associated with the gyrator transform. Hacettepe Journal of Mathematics and Statistics 54 4 1426–1441.
IEEE K. Mahato, S. Arya, and A. Prasad, “Pseudo-differential operators associated with the gyrator transform”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 4, pp. 1426–1441, 2025, doi: 10.15672/hujms.1471348.
ISNAD Mahato, Kanailal et al. “Pseudo-Differential Operators Associated With the Gyrator Transform”. Hacettepe Journal of Mathematics and Statistics 54/4 (August2025), 1426-1441. https://doi.org/10.15672/hujms.1471348.
JAMA Mahato K, Arya S, Prasad A. Pseudo-differential operators associated with the gyrator transform. Hacettepe Journal of Mathematics and Statistics. 2025;54:1426–1441.
MLA Mahato, Kanailal et al. “Pseudo-Differential Operators Associated With the Gyrator Transform”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 4, 2025, pp. 1426-41, doi:10.15672/hujms.1471348.
Vancouver Mahato K, Arya S, Prasad A. Pseudo-differential operators associated with the gyrator transform. Hacettepe Journal of Mathematics and Statistics. 2025;54(4):1426-41.