Research Article
BibTex RIS Cite

Year 2025, Volume: 54 Issue: 5, 1737 - 1757, 29.10.2025
https://doi.org/10.15672/hujms.1542854

Abstract

References

  • [1] F. Bagarello, Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects, eds. F. Bagarello, J.P. Gazeau, F.H. Szafraniec, M. Znojil, John Wiley & Sons, Inc. 2015.
  • [2] C.M. Bender, G.V. Dunnen and P.N. Meisinger, Complex periodic potentials with real band spectra, Phys. Lett. A 252, 272-276, 1999.
  • [3] C.M. Bender, PT-symmetric potentials having continuous spectra J. Phys. A: Math. 53 (37), 375302, 2020.
  • [4] B.M. Brown, M.S.P. Eastham and K.M. Schmidt, Periodic differential operators, Operator Theory: Advances and Applications, 230, Birkhuser/Springer: Basel AG, Basel, 2013.
  • [5] N. Dernek and O.A. Veliev, On the Riesz basisness of the root functions of the nonselfadjoint Sturm-Liouville operators, Isr. J. Math. 145, 113-123, 2005.
  • [6] M.S.P. Eastham, The Spectral Theory of Periodic Differential Operators Hafner, New York, 1974.
  • [7] M.G. Gasymov, Spectral analysis of a class of second-order nonself-adjoint differential operators, Fankts. Anal. Prilozhen 14, 14-19, 1980.
  • [8] N.B. Kerimov, On a Boundary value problem of N. I. Ionkin type, Differ. Equ. 49, 1233-1245, 2013.
  • [9] M. Levy and B. Keller, Instability intervals of Hill’s equation, Commun. Pure Appl. Math. 16, 469-476, 1963.
  • [10] W. Magnus and S. Winkler, Hill’s Equation, Interscience Publishers, New York, 1966.
  • [11] V. Marchenko, Sturm-Liouville Operators and Applications, Basel, Birkhauser Verlag, 1986.
  • [12] A. Mostafazadeh, Pseudo-hermitian representation of quantum mechanics International Journal of Geometric Methods in Modern Physics (IJGMMP) 11, 1191-1306, 2010.
  • [13] C. Nur, On the estimations of the small eigenvalues of SturmLiouville operators with periodic and antiperiodic boundary conditions, Bound. Value Probl. 2018:190, 2018.
  • [14] C. Nur, On the Estimates of Periodic Eigenvalues of Sturm-Liouville Operators with Trigonometric Polynomial Potentials Math. Notes 109 (5), 794-807, 2021.
  • [15] C. Nur, Computing Periodic and Antiperiodic Eigenvalues with a PT-Symmetric Optical Potential Math. Notes 114 (6), 1401-1417, 2023.
  • [16] C. Nur, Computing Eigenvalues of Sturm-Liouville Operators with a Family of Trigonometric Polynomial Potentials Mathematical Sciences and Applications ENotes 11 (1), 29-42, 2023.
  • [17] A.A. Shkalikov and O.A. Veliev, On the Riesz basis property of the eigen- and associated functions of periodic and antiperiodic Sturm-Liouville Problems, Math. Notes 85 (5), 647-660, 2009.
  • [18] O.A. Veliev, Isospectral Mathieu-Hill operators, Lett. Math. Phys. 103, 919-925, 2013.
  • [19] O.A. Veliev, Spectral problems of a class of non-self-adjoint one-dimensional Schrodinger operators, J. Math. Anal. Appl. 422, 1390-1401, 2015.
  • [20] O.A. Veliev, On the spectral properties of the Schrodinger operator with a periodic PTsymmetric potential, International Journal of Geometric Methods in Modern Physics 14 (1750065), 2017.
  • [21] O.A. Veliev, The spectrum of the Hamiltonian with a PT-symmetric periodic optical potential International Journal of Geometric Methods in Modern Physics(IJGMMP) 15 (1850008), 2018.
  • [22] O.A. Veliev, On the finite-zone periodic PT-symmetric potentials Mosc. Math. J. 19 (4), 807-816, 2019.
  • [23] O.A. Veliev, Spectral analysis of the Schrodinger operator with a PT-symmetric periodic optical potential J. Math. Phys. 61, (063508), 2020.
  • [24] O. Veliev, Non-self-adjoint Schrödinger Operator with a Periodic Potential Springer, Switzerland, 2021. https://link.springer.com/book/10.1007/978-3-030-72683-6
  • [25] O.A. Veliev, On Exact Estimates of Instability Zones of the Hill’s Equation with Locally Integrable Potential, arxiv.org/abs/2311.11568v2, 2023.
  • [26] O. Veliev, From One-Dimensional to Multidimensional In: Multidimensional Periodic Schrödinger Operator, Springer Tracts in Modern Physics 291, 31177, Springer, Switzerland, 2024.

Estimates for eigenvalues of Sturm-Liouville operators with some PT-symmetric potentials

Year 2025, Volume: 54 Issue: 5, 1737 - 1757, 29.10.2025
https://doi.org/10.15672/hujms.1542854

Abstract

We provide some useful equations for calculating the periodic and antiperiodic eigenvalues of the one-dimensional Schrödinger operator $S(q)$ with a special potential that is a PT-symmetric trigonometric polynomial. We even give estimates to approximate complex eigenvalues by the roots of some polynomials derived from some iteration formulas. Moreover, we give a numerical example with error estimation using Rouche's theorem.

References

  • [1] F. Bagarello, Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects, eds. F. Bagarello, J.P. Gazeau, F.H. Szafraniec, M. Znojil, John Wiley & Sons, Inc. 2015.
  • [2] C.M. Bender, G.V. Dunnen and P.N. Meisinger, Complex periodic potentials with real band spectra, Phys. Lett. A 252, 272-276, 1999.
  • [3] C.M. Bender, PT-symmetric potentials having continuous spectra J. Phys. A: Math. 53 (37), 375302, 2020.
  • [4] B.M. Brown, M.S.P. Eastham and K.M. Schmidt, Periodic differential operators, Operator Theory: Advances and Applications, 230, Birkhuser/Springer: Basel AG, Basel, 2013.
  • [5] N. Dernek and O.A. Veliev, On the Riesz basisness of the root functions of the nonselfadjoint Sturm-Liouville operators, Isr. J. Math. 145, 113-123, 2005.
  • [6] M.S.P. Eastham, The Spectral Theory of Periodic Differential Operators Hafner, New York, 1974.
  • [7] M.G. Gasymov, Spectral analysis of a class of second-order nonself-adjoint differential operators, Fankts. Anal. Prilozhen 14, 14-19, 1980.
  • [8] N.B. Kerimov, On a Boundary value problem of N. I. Ionkin type, Differ. Equ. 49, 1233-1245, 2013.
  • [9] M. Levy and B. Keller, Instability intervals of Hill’s equation, Commun. Pure Appl. Math. 16, 469-476, 1963.
  • [10] W. Magnus and S. Winkler, Hill’s Equation, Interscience Publishers, New York, 1966.
  • [11] V. Marchenko, Sturm-Liouville Operators and Applications, Basel, Birkhauser Verlag, 1986.
  • [12] A. Mostafazadeh, Pseudo-hermitian representation of quantum mechanics International Journal of Geometric Methods in Modern Physics (IJGMMP) 11, 1191-1306, 2010.
  • [13] C. Nur, On the estimations of the small eigenvalues of SturmLiouville operators with periodic and antiperiodic boundary conditions, Bound. Value Probl. 2018:190, 2018.
  • [14] C. Nur, On the Estimates of Periodic Eigenvalues of Sturm-Liouville Operators with Trigonometric Polynomial Potentials Math. Notes 109 (5), 794-807, 2021.
  • [15] C. Nur, Computing Periodic and Antiperiodic Eigenvalues with a PT-Symmetric Optical Potential Math. Notes 114 (6), 1401-1417, 2023.
  • [16] C. Nur, Computing Eigenvalues of Sturm-Liouville Operators with a Family of Trigonometric Polynomial Potentials Mathematical Sciences and Applications ENotes 11 (1), 29-42, 2023.
  • [17] A.A. Shkalikov and O.A. Veliev, On the Riesz basis property of the eigen- and associated functions of periodic and antiperiodic Sturm-Liouville Problems, Math. Notes 85 (5), 647-660, 2009.
  • [18] O.A. Veliev, Isospectral Mathieu-Hill operators, Lett. Math. Phys. 103, 919-925, 2013.
  • [19] O.A. Veliev, Spectral problems of a class of non-self-adjoint one-dimensional Schrodinger operators, J. Math. Anal. Appl. 422, 1390-1401, 2015.
  • [20] O.A. Veliev, On the spectral properties of the Schrodinger operator with a periodic PTsymmetric potential, International Journal of Geometric Methods in Modern Physics 14 (1750065), 2017.
  • [21] O.A. Veliev, The spectrum of the Hamiltonian with a PT-symmetric periodic optical potential International Journal of Geometric Methods in Modern Physics(IJGMMP) 15 (1850008), 2018.
  • [22] O.A. Veliev, On the finite-zone periodic PT-symmetric potentials Mosc. Math. J. 19 (4), 807-816, 2019.
  • [23] O.A. Veliev, Spectral analysis of the Schrodinger operator with a PT-symmetric periodic optical potential J. Math. Phys. 61, (063508), 2020.
  • [24] O. Veliev, Non-self-adjoint Schrödinger Operator with a Periodic Potential Springer, Switzerland, 2021. https://link.springer.com/book/10.1007/978-3-030-72683-6
  • [25] O.A. Veliev, On Exact Estimates of Instability Zones of the Hill’s Equation with Locally Integrable Potential, arxiv.org/abs/2311.11568v2, 2023.
  • [26] O. Veliev, From One-Dimensional to Multidimensional In: Multidimensional Periodic Schrödinger Operator, Springer Tracts in Modern Physics 291, 31177, Springer, Switzerland, 2024.
There are 26 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Research Article
Authors

Cemile Nur 0000-0001-7375-3474

Early Pub Date January 27, 2025
Publication Date October 29, 2025
Submission Date September 3, 2024
Acceptance Date January 6, 2025
Published in Issue Year 2025 Volume: 54 Issue: 5

Cite

APA Nur, C. (2025). Estimates for eigenvalues of Sturm-Liouville operators with some PT-symmetric potentials. Hacettepe Journal of Mathematics and Statistics, 54(5), 1737-1757. https://doi.org/10.15672/hujms.1542854
AMA Nur C. Estimates for eigenvalues of Sturm-Liouville operators with some PT-symmetric potentials. Hacettepe Journal of Mathematics and Statistics. October 2025;54(5):1737-1757. doi:10.15672/hujms.1542854
Chicago Nur, Cemile. “Estimates for Eigenvalues of Sturm-Liouville Operators With Some PT-Symmetric Potentials”. Hacettepe Journal of Mathematics and Statistics 54, no. 5 (October 2025): 1737-57. https://doi.org/10.15672/hujms.1542854.
EndNote Nur C (October 1, 2025) Estimates for eigenvalues of Sturm-Liouville operators with some PT-symmetric potentials. Hacettepe Journal of Mathematics and Statistics 54 5 1737–1757.
IEEE C. Nur, “Estimates for eigenvalues of Sturm-Liouville operators with some PT-symmetric potentials”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 5, pp. 1737–1757, 2025, doi: 10.15672/hujms.1542854.
ISNAD Nur, Cemile. “Estimates for Eigenvalues of Sturm-Liouville Operators With Some PT-Symmetric Potentials”. Hacettepe Journal of Mathematics and Statistics 54/5 (October2025), 1737-1757. https://doi.org/10.15672/hujms.1542854.
JAMA Nur C. Estimates for eigenvalues of Sturm-Liouville operators with some PT-symmetric potentials. Hacettepe Journal of Mathematics and Statistics. 2025;54:1737–1757.
MLA Nur, Cemile. “Estimates for Eigenvalues of Sturm-Liouville Operators With Some PT-Symmetric Potentials”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 5, 2025, pp. 1737-5, doi:10.15672/hujms.1542854.
Vancouver Nur C. Estimates for eigenvalues of Sturm-Liouville operators with some PT-symmetric potentials. Hacettepe Journal of Mathematics and Statistics. 2025;54(5):1737-5.