Research Article
BibTex RIS Cite

Year 2025, Volume: 54 Issue: 4, 1257 - 1275, 29.08.2025
https://doi.org/10.15672/hujms.1543634

Abstract

Project Number

the Natural Science Foundation of China (Nos. 12471428, 12071033, 12271036)

References

  • [1] J. Adámek, H. Herrlich and G.E. Strecker, Abstract and Concrete Categories, Wiley, New York, 1990.
  • [2] R. Bělohlávek, Fuzzy Relational Systems: Foundations and Principles, Kluwer Academic Publishers, New York, Boston, Dordrecht, London, Moscow, 2002.
  • [3] C.H. Cook and H.R. Fischer, On equicontinuity and continuous convergence, Math. Ann. 159, 94–104, 1965.
  • [4] C.H. Cook and H.R. Fischer, Uniform convergence spaces, Math. Ann. 173, 290–306, 1967.
  • [5] J.M. Fang, Stratified L-ordered convergence structures, Fuzzy Sets Syst. 161, 2130– 2149, 2010.
  • [6] W. Gähler, Grundlagen der Analysis I, Birkhäuser, Basel, Stuttgart, 1977.
  • [7] Y. Gao and B. Pang, Subcategories of the category of $\top$-convergence spaces, Hacet. J. Math. Stat. 53, 88–106, 2024.
  • [8] X.C. Han and B. Pang, Convergence structures in L-concave spaces, Iran. J. Fuzzy Syst. 21, 61–80, 2024.
  • [9] D. Hofomann, G.J. Seal and W. Tholen, Monodial Topology: A Categorical Approach to Order, Metric, and Topology, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2014.
  • [10] U. Höhle and A. Šostak, Axiomatic foundations of fixed-basis fuzzy topology, in: U. Höhle, S.E. Rodabaugh (Eds.), Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, The Handbooks of Fuzzy Sets Series, vol. 3, Kluwer Academic Publishers, Boston, Dordrecht, London, pp. 123–273, 1999.
  • [11] U. Höhle, Many Valued Topology and its Applications, Kluwer Academic Publishers, Boston, 2001.
  • [12] G. Jäger, A category of L-fuzzy convergence spaces, Quaest. Math. 24, 501–517, 2001.
  • [13] G. Jäger, Pretopological and topological lattice-valued convergence spaces, Fuzzy Sets Syst. 158, 424–435, 2007.
  • [14] Q. Jin and L.Q. Li, On the embedding of L-convex spaces in stratified L-convex spaces, SpringerPlus 5, Article 1610, 2016.
  • [15] D.C. Kent, Convergence functions and their related topologies, Fund. Math. 54, 125– 133, 1964.
  • [16] D.C. Kent, On convergence groups and convergence uniformities, Fund. Math. 60, 213–222, 1967.
  • [17] H.Y. Li and K. Wang, L-ordered neighborhood systems of stratified L-concave structures, J. Nonlinear Convex A. 21, 2783–2793, 2020.
  • [18] Y. Maruyama, Lattice-valued fuzzy convex geometry, RIMS Kokyuroku, 164, 22–37, 2009.
  • [19] B. Pang, Fuzzy convexities via overlap functions, IEEE T. Fuzzy Syst. 31, 1071–1082, 2023.
  • [20] B. Pang, Quantale-valued convex structures as lax algebras, Fuzzy Sets Syst. 473, 108737, 2023.
  • [21] B. Pang and F.G. Shi, Subcategories of the category of L-convex spaces, Fuzzy Sets Syst. 313, 61–74, 2017.
  • [22] B. Pang and F.G. Shi, Strong inclusion orders between L-subsets and its applications in L-convex spaces, Quaest. Math. 41, 1021–1043, 2018.
  • [23] B. Pang and Z.Y. Xiu, An axiomatic approach to bases and subbases in L-convex spaces and their applications, Fuzzy Sets Syst. 369, 40–56, 2019.
  • [24] G. Preuss, Foundations of Topology: An Approach to Convenient Topology, Kluwer Academic Publishers, Dordrecht, Boston, London, 2002.
  • [25] G. Preuss, Semiuniform convergence spaces, Math. Japonica. 41, 465–491, 1995.
  • [26] S.E. Rodabaugh, Categorical foundations of fixed-basis fuzzy topology, in: U. H¨ohle, S.E. Rodabaugh et al. (Eds.), Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, The Handbook of Fuzzy Sets Series, Vol. 3, Kluwer Academic Publishers, Boston, Dordrecht, London, pp. 273–388, 1999.
  • [27] M.V. Rosa, On fuzzy topology fuzzy convexity spaces and fuzzy local convexity, Fuzzy Sets Syst. 62, 97–100, 1994.
  • [28] F.G. Shi and E.Q. Li, The restricted hull operator of M-fuzzifying convex structures, J. Intell. Fuzzy Syst. 30, 409–421, 2015.
  • [29] F.G. Shi and Z.Y. Xiu, A new approach to the fuzzification of convex structures, J. Appl. Math. 2014, 1–12, 2014.
  • [30] F.G. Shi and Z.Y. Xiu, (L,M)-fuzzy convex structures, J. Nonlinear Sci. Appl. 10, 3655–3669, 2017.
  • [31] M.L.J. Van de Vel, Theory of Convex Structures, North-Holland, Amsterdam, 1993.
  • [32] X.Y. Wu and S.Z. Bai, On M-fuzzifying JHC convex structures and M-fuzzifying Peano interval spaces, J. Intell. Fuzzy Syst. 30, 2447–2458, 2016.
  • [33] Z.Y. Xiu and B. Pang, M-fuzzifying cotopological spaces and M-fuzzifying convex spaces as M-fuzzifying closure spaces, J. Intell. Fuzzy Syst. 33, 613–620, 2017.
  • [34] W. Yao, On many-valued stratified L-fuzzy convergence spaces, Fuzzy Sets Syst. 159, 2501–2519, 2008.
  • [35] Y.L. Yue, J.M. Fang and W. Yao, Monadic convergence structures revisited, Fuzzy Sets Syst. 406, 107–118, 2021.
  • [36] L. Zhang and B. Pang, A new approach to lattice-valued convergence groups via $\top$- filters, Fuzzy Sets Syst. 455, 198–221, 2023.
  • [37] L. Zhang and B. Pang, Convergence structures in (L,M)-fuzzy convex spaces, Filomat 37, 2859–2877, 2023.
  • [38] L. Zhang and B. Pang, Subcategories of the category of stratified (L,M)-semiuniform convergence tower spaces, Iran. J. Fuzzy Syst. 20, 179–192, 2023.
  • [39] F. Zhao and B. Pang, Equivalence among L-closure (interior) operators, L-closure (interior) systems and L-enclosed (internal) relations, Filomat, 36, 979–1003, 2022.
  • [40] X.W. Zhou and F.G. Shi, Some new results on six types mappings between L-convex spaces, Filomat, 34 4767–4781, 2020.

The categories of $L$-convex spaces and $L$-convergence spaces: extensionality and productivity of quotient maps

Year 2025, Volume: 54 Issue: 4, 1257 - 1275, 29.08.2025
https://doi.org/10.15672/hujms.1543634

Abstract

Based on a complete residuated lattice $L$, we show that the category of $L$-convex spaces is not extensional and is closed under the formation of finite products of quotient maps. Then we propose the concept of (preconcave, concave) $L$-convergence spaces via $L$-co-Scott closed sets and prove that the category of concave $L$-convergence spaces is isomorphic to that of $L$-concave spaces. Finally, we investigate the categorical properties of $L$-convergence spaces and show that it is extensional and closed under the formation of finite products of quotient maps.

Project Number

the Natural Science Foundation of China (Nos. 12471428, 12071033, 12271036)

References

  • [1] J. Adámek, H. Herrlich and G.E. Strecker, Abstract and Concrete Categories, Wiley, New York, 1990.
  • [2] R. Bělohlávek, Fuzzy Relational Systems: Foundations and Principles, Kluwer Academic Publishers, New York, Boston, Dordrecht, London, Moscow, 2002.
  • [3] C.H. Cook and H.R. Fischer, On equicontinuity and continuous convergence, Math. Ann. 159, 94–104, 1965.
  • [4] C.H. Cook and H.R. Fischer, Uniform convergence spaces, Math. Ann. 173, 290–306, 1967.
  • [5] J.M. Fang, Stratified L-ordered convergence structures, Fuzzy Sets Syst. 161, 2130– 2149, 2010.
  • [6] W. Gähler, Grundlagen der Analysis I, Birkhäuser, Basel, Stuttgart, 1977.
  • [7] Y. Gao and B. Pang, Subcategories of the category of $\top$-convergence spaces, Hacet. J. Math. Stat. 53, 88–106, 2024.
  • [8] X.C. Han and B. Pang, Convergence structures in L-concave spaces, Iran. J. Fuzzy Syst. 21, 61–80, 2024.
  • [9] D. Hofomann, G.J. Seal and W. Tholen, Monodial Topology: A Categorical Approach to Order, Metric, and Topology, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2014.
  • [10] U. Höhle and A. Šostak, Axiomatic foundations of fixed-basis fuzzy topology, in: U. Höhle, S.E. Rodabaugh (Eds.), Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, The Handbooks of Fuzzy Sets Series, vol. 3, Kluwer Academic Publishers, Boston, Dordrecht, London, pp. 123–273, 1999.
  • [11] U. Höhle, Many Valued Topology and its Applications, Kluwer Academic Publishers, Boston, 2001.
  • [12] G. Jäger, A category of L-fuzzy convergence spaces, Quaest. Math. 24, 501–517, 2001.
  • [13] G. Jäger, Pretopological and topological lattice-valued convergence spaces, Fuzzy Sets Syst. 158, 424–435, 2007.
  • [14] Q. Jin and L.Q. Li, On the embedding of L-convex spaces in stratified L-convex spaces, SpringerPlus 5, Article 1610, 2016.
  • [15] D.C. Kent, Convergence functions and their related topologies, Fund. Math. 54, 125– 133, 1964.
  • [16] D.C. Kent, On convergence groups and convergence uniformities, Fund. Math. 60, 213–222, 1967.
  • [17] H.Y. Li and K. Wang, L-ordered neighborhood systems of stratified L-concave structures, J. Nonlinear Convex A. 21, 2783–2793, 2020.
  • [18] Y. Maruyama, Lattice-valued fuzzy convex geometry, RIMS Kokyuroku, 164, 22–37, 2009.
  • [19] B. Pang, Fuzzy convexities via overlap functions, IEEE T. Fuzzy Syst. 31, 1071–1082, 2023.
  • [20] B. Pang, Quantale-valued convex structures as lax algebras, Fuzzy Sets Syst. 473, 108737, 2023.
  • [21] B. Pang and F.G. Shi, Subcategories of the category of L-convex spaces, Fuzzy Sets Syst. 313, 61–74, 2017.
  • [22] B. Pang and F.G. Shi, Strong inclusion orders between L-subsets and its applications in L-convex spaces, Quaest. Math. 41, 1021–1043, 2018.
  • [23] B. Pang and Z.Y. Xiu, An axiomatic approach to bases and subbases in L-convex spaces and their applications, Fuzzy Sets Syst. 369, 40–56, 2019.
  • [24] G. Preuss, Foundations of Topology: An Approach to Convenient Topology, Kluwer Academic Publishers, Dordrecht, Boston, London, 2002.
  • [25] G. Preuss, Semiuniform convergence spaces, Math. Japonica. 41, 465–491, 1995.
  • [26] S.E. Rodabaugh, Categorical foundations of fixed-basis fuzzy topology, in: U. H¨ohle, S.E. Rodabaugh et al. (Eds.), Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, The Handbook of Fuzzy Sets Series, Vol. 3, Kluwer Academic Publishers, Boston, Dordrecht, London, pp. 273–388, 1999.
  • [27] M.V. Rosa, On fuzzy topology fuzzy convexity spaces and fuzzy local convexity, Fuzzy Sets Syst. 62, 97–100, 1994.
  • [28] F.G. Shi and E.Q. Li, The restricted hull operator of M-fuzzifying convex structures, J. Intell. Fuzzy Syst. 30, 409–421, 2015.
  • [29] F.G. Shi and Z.Y. Xiu, A new approach to the fuzzification of convex structures, J. Appl. Math. 2014, 1–12, 2014.
  • [30] F.G. Shi and Z.Y. Xiu, (L,M)-fuzzy convex structures, J. Nonlinear Sci. Appl. 10, 3655–3669, 2017.
  • [31] M.L.J. Van de Vel, Theory of Convex Structures, North-Holland, Amsterdam, 1993.
  • [32] X.Y. Wu and S.Z. Bai, On M-fuzzifying JHC convex structures and M-fuzzifying Peano interval spaces, J. Intell. Fuzzy Syst. 30, 2447–2458, 2016.
  • [33] Z.Y. Xiu and B. Pang, M-fuzzifying cotopological spaces and M-fuzzifying convex spaces as M-fuzzifying closure spaces, J. Intell. Fuzzy Syst. 33, 613–620, 2017.
  • [34] W. Yao, On many-valued stratified L-fuzzy convergence spaces, Fuzzy Sets Syst. 159, 2501–2519, 2008.
  • [35] Y.L. Yue, J.M. Fang and W. Yao, Monadic convergence structures revisited, Fuzzy Sets Syst. 406, 107–118, 2021.
  • [36] L. Zhang and B. Pang, A new approach to lattice-valued convergence groups via $\top$- filters, Fuzzy Sets Syst. 455, 198–221, 2023.
  • [37] L. Zhang and B. Pang, Convergence structures in (L,M)-fuzzy convex spaces, Filomat 37, 2859–2877, 2023.
  • [38] L. Zhang and B. Pang, Subcategories of the category of stratified (L,M)-semiuniform convergence tower spaces, Iran. J. Fuzzy Syst. 20, 179–192, 2023.
  • [39] F. Zhao and B. Pang, Equivalence among L-closure (interior) operators, L-closure (interior) systems and L-enclosed (internal) relations, Filomat, 36, 979–1003, 2022.
  • [40] X.W. Zhou and F.G. Shi, Some new results on six types mappings between L-convex spaces, Filomat, 34 4767–4781, 2020.
There are 40 citations in total.

Details

Primary Language English
Subjects Topology
Journal Section Research Article
Authors

Xiancheng Han This is me 0009-0001-8265-7203

Bin Pang 0000-0001-5092-8278

Project Number the Natural Science Foundation of China (Nos. 12471428, 12071033, 12271036)
Early Pub Date January 27, 2025
Publication Date August 29, 2025
Submission Date September 5, 2024
Acceptance Date November 10, 2024
Published in Issue Year 2025 Volume: 54 Issue: 4

Cite

APA Han, X., & Pang, B. (2025). The categories of $L$-convex spaces and $L$-convergence spaces: extensionality and productivity of quotient maps. Hacettepe Journal of Mathematics and Statistics, 54(4), 1257-1275. https://doi.org/10.15672/hujms.1543634
AMA Han X, Pang B. The categories of $L$-convex spaces and $L$-convergence spaces: extensionality and productivity of quotient maps. Hacettepe Journal of Mathematics and Statistics. August 2025;54(4):1257-1275. doi:10.15672/hujms.1543634
Chicago Han, Xiancheng, and Bin Pang. “The Categories of $L$-Convex Spaces and $L$-Convergence Spaces: Extensionality and Productivity of Quotient Maps”. Hacettepe Journal of Mathematics and Statistics 54, no. 4 (August 2025): 1257-75. https://doi.org/10.15672/hujms.1543634.
EndNote Han X, Pang B (August 1, 2025) The categories of $L$-convex spaces and $L$-convergence spaces: extensionality and productivity of quotient maps. Hacettepe Journal of Mathematics and Statistics 54 4 1257–1275.
IEEE X. Han and B. Pang, “The categories of $L$-convex spaces and $L$-convergence spaces: extensionality and productivity of quotient maps”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 4, pp. 1257–1275, 2025, doi: 10.15672/hujms.1543634.
ISNAD Han, Xiancheng - Pang, Bin. “The Categories of $L$-Convex Spaces and $L$-Convergence Spaces: Extensionality and Productivity of Quotient Maps”. Hacettepe Journal of Mathematics and Statistics 54/4 (August2025), 1257-1275. https://doi.org/10.15672/hujms.1543634.
JAMA Han X, Pang B. The categories of $L$-convex spaces and $L$-convergence spaces: extensionality and productivity of quotient maps. Hacettepe Journal of Mathematics and Statistics. 2025;54:1257–1275.
MLA Han, Xiancheng and Bin Pang. “The Categories of $L$-Convex Spaces and $L$-Convergence Spaces: Extensionality and Productivity of Quotient Maps”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 4, 2025, pp. 1257-75, doi:10.15672/hujms.1543634.
Vancouver Han X, Pang B. The categories of $L$-convex spaces and $L$-convergence spaces: extensionality and productivity of quotient maps. Hacettepe Journal of Mathematics and Statistics. 2025;54(4):1257-75.