Year 2025,
Volume: 54 Issue: 4, 1257 - 1275, 29.08.2025
Xiancheng Han
Bin Pang
Project Number
the Natural Science Foundation of China (Nos. 12471428, 12071033, 12271036)
References
-
[1] J. Adámek, H. Herrlich and G.E. Strecker, Abstract and Concrete Categories, Wiley,
New York, 1990.
-
[2] R. Bělohlávek, Fuzzy Relational Systems: Foundations and Principles, Kluwer Academic
Publishers, New York, Boston, Dordrecht, London, Moscow, 2002.
-
[3] C.H. Cook and H.R. Fischer, On equicontinuity and continuous convergence, Math.
Ann. 159, 94–104, 1965.
-
[4] C.H. Cook and H.R. Fischer, Uniform convergence spaces, Math. Ann. 173, 290–306,
1967.
-
[5] J.M. Fang, Stratified L-ordered convergence structures, Fuzzy Sets Syst. 161, 2130–
2149, 2010.
-
[6] W. Gähler, Grundlagen der Analysis I, Birkhäuser, Basel, Stuttgart, 1977.
-
[7] Y. Gao and B. Pang, Subcategories of the category of $\top$-convergence spaces, Hacet. J.
Math. Stat. 53, 88–106, 2024.
-
[8] X.C. Han and B. Pang, Convergence structures in L-concave spaces, Iran. J. Fuzzy
Syst. 21, 61–80, 2024.
-
[9] D. Hofomann, G.J. Seal and W. Tholen, Monodial Topology: A Categorical Approach
to Order, Metric, and Topology, Encyclopedia of Mathematics and its Applications,
Cambridge University Press, 2014.
-
[10] U. Höhle and A. Šostak, Axiomatic foundations of fixed-basis fuzzy topology, in: U.
Höhle, S.E. Rodabaugh (Eds.), Mathematics of Fuzzy Sets: Logic, Topology and
Measure Theory, The Handbooks of Fuzzy Sets Series, vol. 3, Kluwer Academic Publishers,
Boston, Dordrecht, London, pp. 123–273, 1999.
-
[11] U. Höhle, Many Valued Topology and its Applications, Kluwer Academic Publishers,
Boston, 2001.
-
[12] G. Jäger, A category of L-fuzzy convergence spaces, Quaest. Math. 24, 501–517, 2001.
-
[13] G. Jäger, Pretopological and topological lattice-valued convergence spaces, Fuzzy Sets
Syst. 158, 424–435, 2007.
-
[14] Q. Jin and L.Q. Li, On the embedding of L-convex spaces in stratified L-convex spaces,
SpringerPlus 5, Article 1610, 2016.
-
[15] D.C. Kent, Convergence functions and their related topologies, Fund. Math. 54, 125–
133, 1964.
-
[16] D.C. Kent, On convergence groups and convergence uniformities, Fund. Math. 60,
213–222, 1967.
-
[17] H.Y. Li and K. Wang, L-ordered neighborhood systems of stratified L-concave structures,
J. Nonlinear Convex A. 21, 2783–2793, 2020.
-
[18] Y. Maruyama, Lattice-valued fuzzy convex geometry, RIMS Kokyuroku, 164, 22–37,
2009.
-
[19] B. Pang, Fuzzy convexities via overlap functions, IEEE T. Fuzzy Syst. 31, 1071–1082,
2023.
-
[20] B. Pang, Quantale-valued convex structures as lax algebras, Fuzzy Sets Syst. 473,
108737, 2023.
-
[21] B. Pang and F.G. Shi, Subcategories of the category of L-convex spaces, Fuzzy Sets
Syst. 313, 61–74, 2017.
-
[22] B. Pang and F.G. Shi, Strong inclusion orders between L-subsets and its applications
in L-convex spaces, Quaest. Math. 41, 1021–1043, 2018.
-
[23] B. Pang and Z.Y. Xiu, An axiomatic approach to bases and subbases in L-convex
spaces and their applications, Fuzzy Sets Syst. 369, 40–56, 2019.
-
[24] G. Preuss, Foundations of Topology: An Approach to Convenient Topology, Kluwer
Academic Publishers, Dordrecht, Boston, London, 2002.
-
[25] G. Preuss, Semiuniform convergence spaces, Math. Japonica. 41, 465–491, 1995.
-
[26] S.E. Rodabaugh, Categorical foundations of fixed-basis fuzzy topology, in: U. H¨ohle,
S.E. Rodabaugh et al. (Eds.), Mathematics of Fuzzy Sets: Logic, Topology and Measure
Theory, The Handbook of Fuzzy Sets Series, Vol. 3, Kluwer Academic Publishers,
Boston, Dordrecht, London, pp. 273–388, 1999.
-
[27] M.V. Rosa, On fuzzy topology fuzzy convexity spaces and fuzzy local convexity, Fuzzy
Sets Syst. 62, 97–100, 1994.
-
[28] F.G. Shi and E.Q. Li, The restricted hull operator of M-fuzzifying convex structures,
J. Intell. Fuzzy Syst. 30, 409–421, 2015.
-
[29] F.G. Shi and Z.Y. Xiu, A new approach to the fuzzification of convex structures, J.
Appl. Math. 2014, 1–12, 2014.
-
[30] F.G. Shi and Z.Y. Xiu, (L,M)-fuzzy convex structures, J. Nonlinear Sci. Appl. 10,
3655–3669, 2017.
-
[31] M.L.J. Van de Vel, Theory of Convex Structures, North-Holland, Amsterdam, 1993.
-
[32] X.Y. Wu and S.Z. Bai, On M-fuzzifying JHC convex structures and M-fuzzifying
Peano interval spaces, J. Intell. Fuzzy Syst. 30, 2447–2458, 2016.
-
[33] Z.Y. Xiu and B. Pang, M-fuzzifying cotopological spaces and M-fuzzifying convex
spaces as M-fuzzifying closure spaces, J. Intell. Fuzzy Syst. 33, 613–620, 2017.
-
[34] W. Yao, On many-valued stratified L-fuzzy convergence spaces, Fuzzy Sets Syst. 159,
2501–2519, 2008.
-
[35] Y.L. Yue, J.M. Fang and W. Yao, Monadic convergence structures revisited, Fuzzy
Sets Syst. 406, 107–118, 2021.
-
[36] L. Zhang and B. Pang, A new approach to lattice-valued convergence groups via $\top$-
filters, Fuzzy Sets Syst. 455, 198–221, 2023.
-
[37] L. Zhang and B. Pang, Convergence structures in (L,M)-fuzzy convex spaces, Filomat
37, 2859–2877, 2023.
-
[38] L. Zhang and B. Pang, Subcategories of the category of stratified (L,M)-semiuniform
convergence tower spaces, Iran. J. Fuzzy Syst. 20, 179–192, 2023.
-
[39] F. Zhao and B. Pang, Equivalence among L-closure (interior) operators, L-closure
(interior) systems and L-enclosed (internal) relations, Filomat, 36, 979–1003, 2022.
-
[40] X.W. Zhou and F.G. Shi, Some new results on six types mappings between L-convex
spaces, Filomat, 34 4767–4781, 2020.
The categories of $L$-convex spaces and $L$-convergence spaces: extensionality and productivity of quotient maps
Year 2025,
Volume: 54 Issue: 4, 1257 - 1275, 29.08.2025
Xiancheng Han
Bin Pang
Abstract
Based on a complete residuated lattice $L$, we show that the category of $L$-convex spaces is not extensional and is closed under the formation of finite products of quotient maps. Then we propose the concept of (preconcave, concave) $L$-convergence spaces via $L$-co-Scott closed sets and prove that the category of concave $L$-convergence spaces is isomorphic to that of $L$-concave spaces. Finally, we investigate the categorical properties of $L$-convergence spaces and show that it is extensional and closed under the formation of finite products of quotient maps.
Project Number
the Natural Science Foundation of China (Nos. 12471428, 12071033, 12271036)
References
-
[1] J. Adámek, H. Herrlich and G.E. Strecker, Abstract and Concrete Categories, Wiley,
New York, 1990.
-
[2] R. Bělohlávek, Fuzzy Relational Systems: Foundations and Principles, Kluwer Academic
Publishers, New York, Boston, Dordrecht, London, Moscow, 2002.
-
[3] C.H. Cook and H.R. Fischer, On equicontinuity and continuous convergence, Math.
Ann. 159, 94–104, 1965.
-
[4] C.H. Cook and H.R. Fischer, Uniform convergence spaces, Math. Ann. 173, 290–306,
1967.
-
[5] J.M. Fang, Stratified L-ordered convergence structures, Fuzzy Sets Syst. 161, 2130–
2149, 2010.
-
[6] W. Gähler, Grundlagen der Analysis I, Birkhäuser, Basel, Stuttgart, 1977.
-
[7] Y. Gao and B. Pang, Subcategories of the category of $\top$-convergence spaces, Hacet. J.
Math. Stat. 53, 88–106, 2024.
-
[8] X.C. Han and B. Pang, Convergence structures in L-concave spaces, Iran. J. Fuzzy
Syst. 21, 61–80, 2024.
-
[9] D. Hofomann, G.J. Seal and W. Tholen, Monodial Topology: A Categorical Approach
to Order, Metric, and Topology, Encyclopedia of Mathematics and its Applications,
Cambridge University Press, 2014.
-
[10] U. Höhle and A. Šostak, Axiomatic foundations of fixed-basis fuzzy topology, in: U.
Höhle, S.E. Rodabaugh (Eds.), Mathematics of Fuzzy Sets: Logic, Topology and
Measure Theory, The Handbooks of Fuzzy Sets Series, vol. 3, Kluwer Academic Publishers,
Boston, Dordrecht, London, pp. 123–273, 1999.
-
[11] U. Höhle, Many Valued Topology and its Applications, Kluwer Academic Publishers,
Boston, 2001.
-
[12] G. Jäger, A category of L-fuzzy convergence spaces, Quaest. Math. 24, 501–517, 2001.
-
[13] G. Jäger, Pretopological and topological lattice-valued convergence spaces, Fuzzy Sets
Syst. 158, 424–435, 2007.
-
[14] Q. Jin and L.Q. Li, On the embedding of L-convex spaces in stratified L-convex spaces,
SpringerPlus 5, Article 1610, 2016.
-
[15] D.C. Kent, Convergence functions and their related topologies, Fund. Math. 54, 125–
133, 1964.
-
[16] D.C. Kent, On convergence groups and convergence uniformities, Fund. Math. 60,
213–222, 1967.
-
[17] H.Y. Li and K. Wang, L-ordered neighborhood systems of stratified L-concave structures,
J. Nonlinear Convex A. 21, 2783–2793, 2020.
-
[18] Y. Maruyama, Lattice-valued fuzzy convex geometry, RIMS Kokyuroku, 164, 22–37,
2009.
-
[19] B. Pang, Fuzzy convexities via overlap functions, IEEE T. Fuzzy Syst. 31, 1071–1082,
2023.
-
[20] B. Pang, Quantale-valued convex structures as lax algebras, Fuzzy Sets Syst. 473,
108737, 2023.
-
[21] B. Pang and F.G. Shi, Subcategories of the category of L-convex spaces, Fuzzy Sets
Syst. 313, 61–74, 2017.
-
[22] B. Pang and F.G. Shi, Strong inclusion orders between L-subsets and its applications
in L-convex spaces, Quaest. Math. 41, 1021–1043, 2018.
-
[23] B. Pang and Z.Y. Xiu, An axiomatic approach to bases and subbases in L-convex
spaces and their applications, Fuzzy Sets Syst. 369, 40–56, 2019.
-
[24] G. Preuss, Foundations of Topology: An Approach to Convenient Topology, Kluwer
Academic Publishers, Dordrecht, Boston, London, 2002.
-
[25] G. Preuss, Semiuniform convergence spaces, Math. Japonica. 41, 465–491, 1995.
-
[26] S.E. Rodabaugh, Categorical foundations of fixed-basis fuzzy topology, in: U. H¨ohle,
S.E. Rodabaugh et al. (Eds.), Mathematics of Fuzzy Sets: Logic, Topology and Measure
Theory, The Handbook of Fuzzy Sets Series, Vol. 3, Kluwer Academic Publishers,
Boston, Dordrecht, London, pp. 273–388, 1999.
-
[27] M.V. Rosa, On fuzzy topology fuzzy convexity spaces and fuzzy local convexity, Fuzzy
Sets Syst. 62, 97–100, 1994.
-
[28] F.G. Shi and E.Q. Li, The restricted hull operator of M-fuzzifying convex structures,
J. Intell. Fuzzy Syst. 30, 409–421, 2015.
-
[29] F.G. Shi and Z.Y. Xiu, A new approach to the fuzzification of convex structures, J.
Appl. Math. 2014, 1–12, 2014.
-
[30] F.G. Shi and Z.Y. Xiu, (L,M)-fuzzy convex structures, J. Nonlinear Sci. Appl. 10,
3655–3669, 2017.
-
[31] M.L.J. Van de Vel, Theory of Convex Structures, North-Holland, Amsterdam, 1993.
-
[32] X.Y. Wu and S.Z. Bai, On M-fuzzifying JHC convex structures and M-fuzzifying
Peano interval spaces, J. Intell. Fuzzy Syst. 30, 2447–2458, 2016.
-
[33] Z.Y. Xiu and B. Pang, M-fuzzifying cotopological spaces and M-fuzzifying convex
spaces as M-fuzzifying closure spaces, J. Intell. Fuzzy Syst. 33, 613–620, 2017.
-
[34] W. Yao, On many-valued stratified L-fuzzy convergence spaces, Fuzzy Sets Syst. 159,
2501–2519, 2008.
-
[35] Y.L. Yue, J.M. Fang and W. Yao, Monadic convergence structures revisited, Fuzzy
Sets Syst. 406, 107–118, 2021.
-
[36] L. Zhang and B. Pang, A new approach to lattice-valued convergence groups via $\top$-
filters, Fuzzy Sets Syst. 455, 198–221, 2023.
-
[37] L. Zhang and B. Pang, Convergence structures in (L,M)-fuzzy convex spaces, Filomat
37, 2859–2877, 2023.
-
[38] L. Zhang and B. Pang, Subcategories of the category of stratified (L,M)-semiuniform
convergence tower spaces, Iran. J. Fuzzy Syst. 20, 179–192, 2023.
-
[39] F. Zhao and B. Pang, Equivalence among L-closure (interior) operators, L-closure
(interior) systems and L-enclosed (internal) relations, Filomat, 36, 979–1003, 2022.
-
[40] X.W. Zhou and F.G. Shi, Some new results on six types mappings between L-convex
spaces, Filomat, 34 4767–4781, 2020.