Year 2025,
Volume: 54 Issue: 4, 1622 - 1636, 29.08.2025
Solmaz Seifollahi
,
Hossein Bevrani
,
Kristofer Månsson
References
-
[1] M. R. Abonazel and I. M. Taha, Beta ridge regression estimators: simulation and
application, Commun. Stat. Simul. Comput. 52(9), 4280–4292, 2021.
-
[2] M. R. Abonazel, Z. Y. Algamal, F. A. Awwad and I. M.Taha, A new two-parameter
estimator for beta regression model: Method, simulation, and application. Front. Appl.
Math. Stat. 7, 780322, 2022.
-
[3] S. Aktas and H. Unlu, Beta regression for the indicator values of well-being index for
provinces in Turkey, J. Eng. Technol. Appl. Sci. 2(2), 101–111, 2017.
-
[4] Z. Y. Algamal, M. R. Abonazel and A. F. Lukman, Modified jackknife ridge estimator
for beta regression model with application to chemical data. Int. J. Math. Stat.
Comput. 1, 15–24, 2023.
-
[5] Z. Y. Algamal and M. R. Abonazel, Developing a Liu-type estimator in beta regression
model. Concurrency Comput. Pract. Exp. 34(5), e6685, 2021.
-
[6] R. Arabi Belaghi, Y. Asar, and R. Larsson, Improved shrinkage estimators in the beta
regression model with application in econometric and educational data, Stat. Pap. 64,
1891–1912, 2023.
-
[7] D. G. Bails and L. C. Peppers, Business fluctuations, Englewood Cliffs: Prentice-Hall,
1982.
-
[8] Y. Cong, B. Chen, and M. Zhou, Fast simulation of hyperplane-truncated multivariate
normal distributions, Bayesian Anal. 12(4), 1017–1037, 2017.
-
[9] F. Cribari-Neto and A. Zeileis, Beta regression in R, J. Stat. Softw. 34(2), 1–24, 2010.
-
[10] W. W. Davis, Bayesian analysis of the linear model subject to linear inequality constraints,
J. Am. Stat. Assoc. 73, 573–579, 1987.
-
[11] L. A. Escobar and B. Skarpness, Mean square error and efficiency of the least squares
estimator over interval constraints, Commun. Stat. Theory Methods 16, 397–406,
1987.
-
[12] L. A. Escobar and B. Skarpness, The bias of the least squares estimator over interval
constraints, Econ. Lett., 20 331–335, 1986.
-
[13] A. Erkoç, E. Ertan, Z. Y. Algamal and K. U. Akay, The beta Liu-type estimator:
simulation and application, Hacet. J. Math. Stat., 52(3), 828–840, 2023.
-
[14] S. Ferrari and F. Cribari-Neto, Beta regression for modelling rates and proportions,
J. Appl. Stat. 31(7), 799–815, 2004.
-
[15] J. Geweke, Exact inference in the inequality constrained normal linear regression
model, J. Appl. Econom. 1, 127–141, 1986.
-
[16] J. Geweke, Bayesian inference for linear models subject to linear inequality constraints,
New York: Springer, 1996.
-
[17] R. Ghosal and S. K. Ghosh, Bayesian inference for generalized linear model with
linear inequality constraints, Comput. Stat. Data Anal. 166, 107335, 2022.
-
[18] G. G. Judge and T. Takayama, Inequality restrictions in regression analysis, J. Am.
Stat. Assoc. 61, 166–181, 1966.
-
[19] P. Karlsson, K. Månsson and B. M. G. Kibria, A Liu estimator for the beta regression
model and its application to chemical data, J. Chemom. 34(6), e3300, 2020.
-
[20] Y. Koike and Y. Tanoue, Oracle inequalities for sign constrained generalized linear
models, Econ. Stat. 11, 145–157, 2019.
-
[21] S. Lan, B. Zhou and B. Shahbaba, Spherical Hamiltonian Monte Carlo for constrained
target distributions, Proc. Int. Conf. Mach. Learn. 32, 629–637, 2014.
-
[22] Y. Li and S. K. Ghosh, Efficient sampling methods for truncated multivariate normal
and Student-t distributions subject to linear inequality constraints, J. Stat. Theory
Pract. 9, 712–732, 2014.
-
[23] M. C. Lovell and E. Prescott, Multiple regression with inequality constraints: Pretesting
bias, hypothesis testing and efficiency, J. Am. Stat. Assoc. 65, 913–925, 1970.
-
[24] T. F. R. Ma, S. K. Ghosh and Y. Li, Sampling from truncated multivariate normal
and t distributions, version 1.0.2, 2018. Available at: https://cran.r-project.org/
web/packages/tmvmixnorm
-
[25] S. Mahmood, N. Seyala and Z. Y. Algamal, Adjusted R2-type measures for beta regression
model. Electron. J. Appl. Stat. Anal. 13(2), 350–357, 2020.
-
[26] D. Manolakis and G. Shaw, Detection algorithms for hyperspectral imaging applications,
IEEE Signal Process. Mag. 19, 29–43, 2002.
-
[27] N. Meinshausen, Sign-constrained least squares estimation, Electron. J. Stat. 7,
1607–1631, 2013.
-
[28] B. Neelon and D. B. Dunson, Bayesian isotonic regression and trend analysis, Biometrics
60, 398–406, 2004.
-
[29] K. Ohtani, The MSE of the least squares estimator over an interval constraint, Econ.
Lett. 25, 351–354, 1987.
-
[30] A. Pakman and L. Paninski, Exact Hamiltonian Monte Carlo for truncated multivariate
Gaussians, J. Comput. Graph. Stat. 23(2), 518–542, 2014.
-
[31] R. S. Pindyck and D. L. Rubinfeld, Econometric Models and Economic Forecasts, 2nd
ed., McGraw-Hill, New York, 1981.
-
[32] M. Qasim, K. Månsson, and B. M. G. Kibria, On some beta ridge regression estimators:
method, simulation and application, J. Stat. Comput. Simul. 91, 1699–1712,
2021.
-
[33] G. Rodriguez-Yam, R. A. Davis, and L. L. Scharf, Efficient Gibbs sampling of truncated
multivariate normal with application to constrained linear regression, Technical
Report, Colorado State University, unpublished manuscript, 2004.
-
[34] S. Seifollahi and H. Bevrani, James-Stein type estimators in beta regression model:
simulation and application, Hacet. J. Math. Stat. 52(4), 1046–1065, 2023.
-
[35] S. Seifollahi, K. Kamary, and H. Bevrani, Bayesian estimation approach for linear
regression models with linear inequality restrictions, arXiv:2112.02950, 2021.
-
[36] S. Seifollahi, H. Bevrani, and K. Kamary, Inequality restricted estimator for Gamma
regression: Bayesian approach as a solution to the multicollinearity, Commun. Stat.
Theory Methods 53(23), 8297–8311, 2023.
-
[37] S. Seifollahi, H. Bevrani and O. Albalawi, Reducing bias in beta regression models
using Jackknifed Liu-type estimators: applications to chemical data. J Math. 6694880,
2024.
-
[38] M. Slawski and M. Hein, Non-negative least squares for high-dimensional linear models:
consistency and sparse recovery without regularization, Electron. J. Stat. 7,
3004–3056, 2013.
-
[39] M. Smithson and J. Verkuilen, A better lemon squeezer? Maximum-likelihood regression
with beta-distributed dependent variables, Psychol. Methods 11(1), 54–71, 2006.
-
[40] S. D. Veiga and A. Marrel, Gaussian process regression with linear inequality constraints,
Reliab. Eng. Syst. Saf. 195, 106732, 2020.
-
[41] J. Wang and S. K. Ghosh, Shape restricted nonparametric regression with Bernstein
polynomials, Comput. Stat. Data Anal. 55, 2729–2741, 2012.
-
[42] J. Zhu, R. Santerre, and X. W. Chang, A Bayesian method for linear, inequality
constrained adjustment and its application to GPS positioning, J. Geod. 78, 528–534,
2005.
Bayesian analysis of the beta regression model subject to linear inequality restrictions with application
Year 2025,
Volume: 54 Issue: 4, 1622 - 1636, 29.08.2025
Solmaz Seifollahi
,
Hossein Bevrani
,
Kristofer Månsson
Abstract
Recent studies in machine learning are based on models in which parameters or state variables are restricted by a restricted boundedness. These restrictions are based on prior information to ensure the validity of scientific theories or structural consistency based on physical phenomena. The valuable information contained in the restrictions must be considered during the estimation process to improve the accuracy of the estimation. Many researchers have focused on linear regression models subject to linear inequality restrictions, but generalized linear models have received little attention. In this paper, the parameters of beta Bayesian regression models subjected to linear inequality restrictions are estimated. The proposed Bayesian restricted estimator, which is demonstrated by simulated studies, outperforms ordinary estimators. Even in the presence of multicollinearity, it outperforms the ridge estimator in terms of the standard deviation and the mean squared error. The results confirm that the proposed Bayesian restricted estimator makes sparsity in parameter estimating without using the regularization penalty. Finally, a real data set is analyzed by the new proposed Bayesian estimation method.
Ethical Statement
We certify that all authors have seen and approved the final version of the manuscript being submitted. They warrant that the paper is the authors' original work, hasn't received prior publication, and isn't under consideration for publication elsewhere.
References
-
[1] M. R. Abonazel and I. M. Taha, Beta ridge regression estimators: simulation and
application, Commun. Stat. Simul. Comput. 52(9), 4280–4292, 2021.
-
[2] M. R. Abonazel, Z. Y. Algamal, F. A. Awwad and I. M.Taha, A new two-parameter
estimator for beta regression model: Method, simulation, and application. Front. Appl.
Math. Stat. 7, 780322, 2022.
-
[3] S. Aktas and H. Unlu, Beta regression for the indicator values of well-being index for
provinces in Turkey, J. Eng. Technol. Appl. Sci. 2(2), 101–111, 2017.
-
[4] Z. Y. Algamal, M. R. Abonazel and A. F. Lukman, Modified jackknife ridge estimator
for beta regression model with application to chemical data. Int. J. Math. Stat.
Comput. 1, 15–24, 2023.
-
[5] Z. Y. Algamal and M. R. Abonazel, Developing a Liu-type estimator in beta regression
model. Concurrency Comput. Pract. Exp. 34(5), e6685, 2021.
-
[6] R. Arabi Belaghi, Y. Asar, and R. Larsson, Improved shrinkage estimators in the beta
regression model with application in econometric and educational data, Stat. Pap. 64,
1891–1912, 2023.
-
[7] D. G. Bails and L. C. Peppers, Business fluctuations, Englewood Cliffs: Prentice-Hall,
1982.
-
[8] Y. Cong, B. Chen, and M. Zhou, Fast simulation of hyperplane-truncated multivariate
normal distributions, Bayesian Anal. 12(4), 1017–1037, 2017.
-
[9] F. Cribari-Neto and A. Zeileis, Beta regression in R, J. Stat. Softw. 34(2), 1–24, 2010.
-
[10] W. W. Davis, Bayesian analysis of the linear model subject to linear inequality constraints,
J. Am. Stat. Assoc. 73, 573–579, 1987.
-
[11] L. A. Escobar and B. Skarpness, Mean square error and efficiency of the least squares
estimator over interval constraints, Commun. Stat. Theory Methods 16, 397–406,
1987.
-
[12] L. A. Escobar and B. Skarpness, The bias of the least squares estimator over interval
constraints, Econ. Lett., 20 331–335, 1986.
-
[13] A. Erkoç, E. Ertan, Z. Y. Algamal and K. U. Akay, The beta Liu-type estimator:
simulation and application, Hacet. J. Math. Stat., 52(3), 828–840, 2023.
-
[14] S. Ferrari and F. Cribari-Neto, Beta regression for modelling rates and proportions,
J. Appl. Stat. 31(7), 799–815, 2004.
-
[15] J. Geweke, Exact inference in the inequality constrained normal linear regression
model, J. Appl. Econom. 1, 127–141, 1986.
-
[16] J. Geweke, Bayesian inference for linear models subject to linear inequality constraints,
New York: Springer, 1996.
-
[17] R. Ghosal and S. K. Ghosh, Bayesian inference for generalized linear model with
linear inequality constraints, Comput. Stat. Data Anal. 166, 107335, 2022.
-
[18] G. G. Judge and T. Takayama, Inequality restrictions in regression analysis, J. Am.
Stat. Assoc. 61, 166–181, 1966.
-
[19] P. Karlsson, K. Månsson and B. M. G. Kibria, A Liu estimator for the beta regression
model and its application to chemical data, J. Chemom. 34(6), e3300, 2020.
-
[20] Y. Koike and Y. Tanoue, Oracle inequalities for sign constrained generalized linear
models, Econ. Stat. 11, 145–157, 2019.
-
[21] S. Lan, B. Zhou and B. Shahbaba, Spherical Hamiltonian Monte Carlo for constrained
target distributions, Proc. Int. Conf. Mach. Learn. 32, 629–637, 2014.
-
[22] Y. Li and S. K. Ghosh, Efficient sampling methods for truncated multivariate normal
and Student-t distributions subject to linear inequality constraints, J. Stat. Theory
Pract. 9, 712–732, 2014.
-
[23] M. C. Lovell and E. Prescott, Multiple regression with inequality constraints: Pretesting
bias, hypothesis testing and efficiency, J. Am. Stat. Assoc. 65, 913–925, 1970.
-
[24] T. F. R. Ma, S. K. Ghosh and Y. Li, Sampling from truncated multivariate normal
and t distributions, version 1.0.2, 2018. Available at: https://cran.r-project.org/
web/packages/tmvmixnorm
-
[25] S. Mahmood, N. Seyala and Z. Y. Algamal, Adjusted R2-type measures for beta regression
model. Electron. J. Appl. Stat. Anal. 13(2), 350–357, 2020.
-
[26] D. Manolakis and G. Shaw, Detection algorithms for hyperspectral imaging applications,
IEEE Signal Process. Mag. 19, 29–43, 2002.
-
[27] N. Meinshausen, Sign-constrained least squares estimation, Electron. J. Stat. 7,
1607–1631, 2013.
-
[28] B. Neelon and D. B. Dunson, Bayesian isotonic regression and trend analysis, Biometrics
60, 398–406, 2004.
-
[29] K. Ohtani, The MSE of the least squares estimator over an interval constraint, Econ.
Lett. 25, 351–354, 1987.
-
[30] A. Pakman and L. Paninski, Exact Hamiltonian Monte Carlo for truncated multivariate
Gaussians, J. Comput. Graph. Stat. 23(2), 518–542, 2014.
-
[31] R. S. Pindyck and D. L. Rubinfeld, Econometric Models and Economic Forecasts, 2nd
ed., McGraw-Hill, New York, 1981.
-
[32] M. Qasim, K. Månsson, and B. M. G. Kibria, On some beta ridge regression estimators:
method, simulation and application, J. Stat. Comput. Simul. 91, 1699–1712,
2021.
-
[33] G. Rodriguez-Yam, R. A. Davis, and L. L. Scharf, Efficient Gibbs sampling of truncated
multivariate normal with application to constrained linear regression, Technical
Report, Colorado State University, unpublished manuscript, 2004.
-
[34] S. Seifollahi and H. Bevrani, James-Stein type estimators in beta regression model:
simulation and application, Hacet. J. Math. Stat. 52(4), 1046–1065, 2023.
-
[35] S. Seifollahi, K. Kamary, and H. Bevrani, Bayesian estimation approach for linear
regression models with linear inequality restrictions, arXiv:2112.02950, 2021.
-
[36] S. Seifollahi, H. Bevrani, and K. Kamary, Inequality restricted estimator for Gamma
regression: Bayesian approach as a solution to the multicollinearity, Commun. Stat.
Theory Methods 53(23), 8297–8311, 2023.
-
[37] S. Seifollahi, H. Bevrani and O. Albalawi, Reducing bias in beta regression models
using Jackknifed Liu-type estimators: applications to chemical data. J Math. 6694880,
2024.
-
[38] M. Slawski and M. Hein, Non-negative least squares for high-dimensional linear models:
consistency and sparse recovery without regularization, Electron. J. Stat. 7,
3004–3056, 2013.
-
[39] M. Smithson and J. Verkuilen, A better lemon squeezer? Maximum-likelihood regression
with beta-distributed dependent variables, Psychol. Methods 11(1), 54–71, 2006.
-
[40] S. D. Veiga and A. Marrel, Gaussian process regression with linear inequality constraints,
Reliab. Eng. Syst. Saf. 195, 106732, 2020.
-
[41] J. Wang and S. K. Ghosh, Shape restricted nonparametric regression with Bernstein
polynomials, Comput. Stat. Data Anal. 55, 2729–2741, 2012.
-
[42] J. Zhu, R. Santerre, and X. W. Chang, A Bayesian method for linear, inequality
constrained adjustment and its application to GPS positioning, J. Geod. 78, 528–534,
2005.