Research Article
BibTex RIS Cite

A study of the quasi covering dimension for finite spaces through the matrix theory

Year 2017, Volume: 46 Issue: 1, 111 - 125, 01.02.2017

Abstract

We use matrices to study the dimension function dim$_q$, calling quasi covering dimension, for finite topological spaces, which is always greater
than or equal to the classical covering dimension dim. In particular, we present algorithms in order to compute the dim$_q(X)$ of an arbitrary finite topological space $X$.

References

  • Georgiou, D. N. and Megaritis, A. C. Covering dimension and finite spaces, Applied Math- ematics and Computation, 218 (2011), 31223130.
  • Georgiou, D. N. and Megaritis, A. C. An algorithm of polynomial order for computing the covering dimension of a finite space, Applied Mathematics and Computation, 231 (2014), 276283.
  • Engelking, R. Theory of dimensions, finite and infinite, Sigma Series in Pure Mathematics, 10. Heldermann Verlag, Lemgo, 1995. viii+401 pp.
  • Eves, H. Elementary matrix theory, Reprint of the 1966 edition, Dover Books on Advanced Mathematics, Dover Publications, Inc., New York, 1980. xvi+325 pp.
  • Georgiou, D. N., Megaritis, A. C. and Sereti, F. A topological dimension greater than or equal to the classical covering dimension, accepted for publication in Houston Journal of Mathematics.
  • Pears, A. R. Dimension Theory of General Spaces, Cambridge University Press, Cambridge, England-New York-Melbourne, 1975. xii+428 pp.
  • Shiraki, M. On finite topological spaces, Rep. Fac. Sci. Kagoshima Univ. 1 1968 18.

Year 2017, Volume: 46 Issue: 1, 111 - 125, 01.02.2017

Abstract

References

  • Georgiou, D. N. and Megaritis, A. C. Covering dimension and finite spaces, Applied Math- ematics and Computation, 218 (2011), 31223130.
  • Georgiou, D. N. and Megaritis, A. C. An algorithm of polynomial order for computing the covering dimension of a finite space, Applied Mathematics and Computation, 231 (2014), 276283.
  • Engelking, R. Theory of dimensions, finite and infinite, Sigma Series in Pure Mathematics, 10. Heldermann Verlag, Lemgo, 1995. viii+401 pp.
  • Eves, H. Elementary matrix theory, Reprint of the 1966 edition, Dover Books on Advanced Mathematics, Dover Publications, Inc., New York, 1980. xvi+325 pp.
  • Georgiou, D. N., Megaritis, A. C. and Sereti, F. A topological dimension greater than or equal to the classical covering dimension, accepted for publication in Houston Journal of Mathematics.
  • Pears, A. R. Dimension Theory of General Spaces, Cambridge University Press, Cambridge, England-New York-Melbourne, 1975. xii+428 pp.
  • Shiraki, M. On finite topological spaces, Rep. Fac. Sci. Kagoshima Univ. 1 1968 18.
There are 7 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

D. N. Georgiou

A. C. Megaritis This is me

F. Sereti This is me

Publication Date February 1, 2017
Published in Issue Year 2017 Volume: 46 Issue: 1

Cite

APA Georgiou, D. N., Megaritis, A. C., & Sereti, F. (2017). A study of the quasi covering dimension for finite spaces through the matrix theory. Hacettepe Journal of Mathematics and Statistics, 46(1), 111-125. https://izlik.org/JA95HL52MC
AMA 1.Georgiou DN, Megaritis AC, Sereti F. A study of the quasi covering dimension for finite spaces through the matrix theory. Hacettepe Journal of Mathematics and Statistics. 2017;46(1):111-125. https://izlik.org/JA95HL52MC
Chicago Georgiou, D. N., A. C. Megaritis, and F. Sereti. 2017. “A Study of the Quasi Covering Dimension for finite Spaces through the Matrix Theory”. Hacettepe Journal of Mathematics and Statistics 46 (1): 111-25. https://izlik.org/JA95HL52MC.
EndNote Georgiou DN, Megaritis AC, Sereti F (February 1, 2017) A study of the quasi covering dimension for finite spaces through the matrix theory. Hacettepe Journal of Mathematics and Statistics 46 1 111–125.
IEEE [1]D. N. Georgiou, A. C. Megaritis, and F. Sereti, “A study of the quasi covering dimension for finite spaces through the matrix theory”, Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 1, pp. 111–125, Feb. 2017, [Online]. Available: https://izlik.org/JA95HL52MC
ISNAD Georgiou, D. N. - Megaritis, A. C. - Sereti, F. “A Study of the Quasi Covering Dimension for finite Spaces through the Matrix Theory”. Hacettepe Journal of Mathematics and Statistics 46/1 (February 1, 2017): 111-125. https://izlik.org/JA95HL52MC.
JAMA 1.Georgiou DN, Megaritis AC, Sereti F. A study of the quasi covering dimension for finite spaces through the matrix theory. Hacettepe Journal of Mathematics and Statistics. 2017;46:111–125.
MLA Georgiou, D. N., et al. “A Study of the Quasi Covering Dimension for finite Spaces through the Matrix Theory”. Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 1, Feb. 2017, pp. 111-25, https://izlik.org/JA95HL52MC.
Vancouver 1.Georgiou DN, Megaritis AC, Sereti F. A study of the quasi covering dimension for finite spaces through the matrix theory. Hacettepe Journal of Mathematics and Statistics [Internet]. 2017 Feb. 1;46(1):111-25. Available from: https://izlik.org/JA95HL52MC