Research Article
BibTex RIS Cite
Year 2020, , 1405 - 1413, 06.08.2020
https://doi.org/10.15672/hujms.489071

Abstract

References

  • [1] I.A. Aliev, Bi-parametric potentials, relevant function spaces and wavelet-like transforms, Integral Equations and Operator Theory, 65, 151–167, 2009.
  • [2] I.A. Aliev and M. Eryigit, Inversion of Bessel potantials with the aid of weighted wavelet transforms, Math. Nachr. 242, 27–37, 2002.
  • [3] I.A. Aliev and B. Rubin, Parabolic potentials and wavelet transforms with the generalized translation, Stud. Math. 145 (1), 1–16, 2001.
  • [4] I.A. Aliev, S. Sezer and M. Eryiğit, An integral transform associated to the Poisson integral and inversion of Flett potentials, J. Math. Anal. Appl. 321, 691–704, 2006.
  • [5] I.A. Aliev, B. Rubin, S. Sezer and S.B. Uyhan, Composite Wavelet Transforms: Aplications and Perspectives, Contemp. Math. AMS, 464, 1–27, 2008.
  • [6] V.Balakrishnan , Fractional powers of closed operators and the semi-groups generated by them, Pasific J. Math. 10, 419–437, 1960.
  • [7] T.M. Flett, Temperatures, Bessel potentials and Lipschitz spaces, Proc. Lond. Math. Soc. 3 (3), 385–451, 1971.
  • [8] P.I. Lizorkin, Characterization of the spaces $L_{p}^{r}\left( \mathbb{R}^{n}\right) $ in terms of difference singular integrals, Mat. Sb. (N.S.) 81 (1), 79–91, 1970 (in Russian).
  • [9] V.A. Nogin, On inversion of Bessel potentials, J. Differential Equations, 18, 1407– 1411, 1982.
  • [10] V.A. Nogin and B.S. Rubin, Inversion of parabolic potentials with L p-densities, Mat. Zametki, 39, 831–840, 1986 (in Russian).
  • [11] B. Rubin, Description and inversion of Bessel potentials by means of hypersingular integrals with weighted differences, Differ. Uravn. 22 (10), 1805–1818, 1986.
  • [12] B. Rubin, A method of characterization and inversion of Bessel and Riesz potentials, Sov. Math. (Iz. VUZ) 30 (5), 78–89, 1986.
  • [13] B. Rubin, Inversion of potentials on $\mathbb{R}^{n}$ with the aid of Gauss-Weierstrass integrals, Math. Notes, 41 (1-2), 22–27, 1987. English translation from Math. Zametki 41 (1), 34–42, 1987.
  • [14] B. Rubin, Fractional integrals and potentials, Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman, Harlow, 1996.
  • [15] S.G. Samko, Hypersingular integrals and their applications, Izdat., Rostov Univ., Rostovon-Don, 1984 (in Russian).
  • [16] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Sci. Publ., London, New York, 1993.
  • [17] S. Sezer and I.A. Aliev, A New Characterization Of The Riesz Potential Spaces With The Aid Of A Composite Wavelet Transform, J. Math. Anal. Appl. 372, 549–558, 2010.
  • [18] E. Stein, The characterization of functions arising as potentials, I, Bull. Amer. Math. Soc. 67 (1), 102–104, 1961.
  • [19] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton New Jersey, 1970.
  • [20] E. Stein and G.Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton NJ., 1971.
  • [21] R.L. Wheeden, On hypersingular integrals and Lebesgue spaces of differentiable functions, Trans. Amer. Math. Soc. 134 (3), 421–435, 1968.

A Balakrishnan-Rubin type hypersingular integral operator and inversion of Flett potentials

Year 2020, , 1405 - 1413, 06.08.2020
https://doi.org/10.15672/hujms.489071

Abstract

In the present paper we introduce new ``truncated" hypersingular integral operators $D_{\epsilon}^{\alpha}f,(\epsilon>0)$ generated by the modified Poisson semigroup and obtain an explicit inversion formula for the Flett potentials in framework of $L_p$--spaces.

****************************************************************************************************************************************************

****************************************************************************************************************************************************

References

  • [1] I.A. Aliev, Bi-parametric potentials, relevant function spaces and wavelet-like transforms, Integral Equations and Operator Theory, 65, 151–167, 2009.
  • [2] I.A. Aliev and M. Eryigit, Inversion of Bessel potantials with the aid of weighted wavelet transforms, Math. Nachr. 242, 27–37, 2002.
  • [3] I.A. Aliev and B. Rubin, Parabolic potentials and wavelet transforms with the generalized translation, Stud. Math. 145 (1), 1–16, 2001.
  • [4] I.A. Aliev, S. Sezer and M. Eryiğit, An integral transform associated to the Poisson integral and inversion of Flett potentials, J. Math. Anal. Appl. 321, 691–704, 2006.
  • [5] I.A. Aliev, B. Rubin, S. Sezer and S.B. Uyhan, Composite Wavelet Transforms: Aplications and Perspectives, Contemp. Math. AMS, 464, 1–27, 2008.
  • [6] V.Balakrishnan , Fractional powers of closed operators and the semi-groups generated by them, Pasific J. Math. 10, 419–437, 1960.
  • [7] T.M. Flett, Temperatures, Bessel potentials and Lipschitz spaces, Proc. Lond. Math. Soc. 3 (3), 385–451, 1971.
  • [8] P.I. Lizorkin, Characterization of the spaces $L_{p}^{r}\left( \mathbb{R}^{n}\right) $ in terms of difference singular integrals, Mat. Sb. (N.S.) 81 (1), 79–91, 1970 (in Russian).
  • [9] V.A. Nogin, On inversion of Bessel potentials, J. Differential Equations, 18, 1407– 1411, 1982.
  • [10] V.A. Nogin and B.S. Rubin, Inversion of parabolic potentials with L p-densities, Mat. Zametki, 39, 831–840, 1986 (in Russian).
  • [11] B. Rubin, Description and inversion of Bessel potentials by means of hypersingular integrals with weighted differences, Differ. Uravn. 22 (10), 1805–1818, 1986.
  • [12] B. Rubin, A method of characterization and inversion of Bessel and Riesz potentials, Sov. Math. (Iz. VUZ) 30 (5), 78–89, 1986.
  • [13] B. Rubin, Inversion of potentials on $\mathbb{R}^{n}$ with the aid of Gauss-Weierstrass integrals, Math. Notes, 41 (1-2), 22–27, 1987. English translation from Math. Zametki 41 (1), 34–42, 1987.
  • [14] B. Rubin, Fractional integrals and potentials, Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman, Harlow, 1996.
  • [15] S.G. Samko, Hypersingular integrals and their applications, Izdat., Rostov Univ., Rostovon-Don, 1984 (in Russian).
  • [16] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Sci. Publ., London, New York, 1993.
  • [17] S. Sezer and I.A. Aliev, A New Characterization Of The Riesz Potential Spaces With The Aid Of A Composite Wavelet Transform, J. Math. Anal. Appl. 372, 549–558, 2010.
  • [18] E. Stein, The characterization of functions arising as potentials, I, Bull. Amer. Math. Soc. 67 (1), 102–104, 1961.
  • [19] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton New Jersey, 1970.
  • [20] E. Stein and G.Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton NJ., 1971.
  • [21] R.L. Wheeden, On hypersingular integrals and Lebesgue spaces of differentiable functions, Trans. Amer. Math. Soc. 134 (3), 421–435, 1968.
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Sinem Sezer Evcan 0000-0003-2066-7833

Melih Eryiğit 0000-0002-9782-7199

Selim Çobanoğlu This is me 0000-0003-0566-5258

Publication Date August 6, 2020
Published in Issue Year 2020

Cite

APA Sezer Evcan, S., Eryiğit, M., & Çobanoğlu, S. (2020). A Balakrishnan-Rubin type hypersingular integral operator and inversion of Flett potentials. Hacettepe Journal of Mathematics and Statistics, 49(4), 1405-1413. https://doi.org/10.15672/hujms.489071
AMA Sezer Evcan S, Eryiğit M, Çobanoğlu S. A Balakrishnan-Rubin type hypersingular integral operator and inversion of Flett potentials. Hacettepe Journal of Mathematics and Statistics. August 2020;49(4):1405-1413. doi:10.15672/hujms.489071
Chicago Sezer Evcan, Sinem, Melih Eryiğit, and Selim Çobanoğlu. “A Balakrishnan-Rubin Type Hypersingular Integral Operator and Inversion of Flett Potentials”. Hacettepe Journal of Mathematics and Statistics 49, no. 4 (August 2020): 1405-13. https://doi.org/10.15672/hujms.489071.
EndNote Sezer Evcan S, Eryiğit M, Çobanoğlu S (August 1, 2020) A Balakrishnan-Rubin type hypersingular integral operator and inversion of Flett potentials. Hacettepe Journal of Mathematics and Statistics 49 4 1405–1413.
IEEE S. Sezer Evcan, M. Eryiğit, and S. Çobanoğlu, “A Balakrishnan-Rubin type hypersingular integral operator and inversion of Flett potentials”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 4, pp. 1405–1413, 2020, doi: 10.15672/hujms.489071.
ISNAD Sezer Evcan, Sinem et al. “A Balakrishnan-Rubin Type Hypersingular Integral Operator and Inversion of Flett Potentials”. Hacettepe Journal of Mathematics and Statistics 49/4 (August 2020), 1405-1413. https://doi.org/10.15672/hujms.489071.
JAMA Sezer Evcan S, Eryiğit M, Çobanoğlu S. A Balakrishnan-Rubin type hypersingular integral operator and inversion of Flett potentials. Hacettepe Journal of Mathematics and Statistics. 2020;49:1405–1413.
MLA Sezer Evcan, Sinem et al. “A Balakrishnan-Rubin Type Hypersingular Integral Operator and Inversion of Flett Potentials”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 4, 2020, pp. 1405-13, doi:10.15672/hujms.489071.
Vancouver Sezer Evcan S, Eryiğit M, Çobanoğlu S. A Balakrishnan-Rubin type hypersingular integral operator and inversion of Flett potentials. Hacettepe Journal of Mathematics and Statistics. 2020;49(4):1405-13.