Research Article
BibTex RIS Cite
Year 2020, , 19 - 29, 06.02.2020
https://doi.org/10.15672/HJMS.2018.648

Abstract

References

  • [1] G. Abrams, Morita equivalence for rings with local units, Commun. Algebra, 11, 801–837, 1983.
  • [2] P.N. Ánh and L.Márki, Morita equivalence for rings without identity, Tsukuba J. Math. 11, 1–16, 1987.
  • [3] B. Banaschewski, Functors into categories of M-sets, Abh. Math. Sem. Univ. Ham- burg, 38, 49–64, 1972.
  • [4] K.R. Fuller, Density and equivalence, J. Algebra 29, 528–550, 1974.
  • [5] J.L. García and L.Marín, Rings having a Morita-like equivalence, Commun. Algebra, 27, 665–680, 1999.
  • [6] J.M. Howie, Fundamentals of semigroup theory, Clarendon press, Oxford, 1995.
  • [7] M. Kilp, U. Knauer and A.V. Mikhalev, Monoids Acts and Categories, Degruyter Expositions in Mathematics, 2000.
  • [8] U. Knauer, Projectivity of acts and Morita equivalence of monoids, Semigroup Forum 3, 359–370, 1972.
  • [9] V. Laan and L. Márki, Strong Morita equivalence of semigroups with local units, J. Pure Appl. Algebra, 215, 2538–2546, 2011.
  • [10] V. Laan and L. Márki, Morita invariants for semigroups with local units, Monatsh. Math. 166, 441–451, 2012.
  • [11] V. Laan and L. Márki, Fair semigroups and Morita equivalence, Semigroup Forum, 92, 633–644, 2016.
  • [12] M.V. Lawson, Morita equivalence of semigroups with local units, J. Pure Appl. Alge- bra 215, 455–470, 2011.
  • [13] H. Liu, Morita equivalence based on Morita context for arbitrary semigroups, Hacet. J. Math. Stat. 45 (4), 1083–1090, 2016.
  • [14] B.Y. Ouyang and W.T. Tong, Morita context and Morita-like equivalence for the xst-rings, Acta Math. Sinica (English Series), 19, 371–380, 2003.
  • [15] B.Y. Ouyang, L.R. Zhou and W.T. Tong, Characterizations of Morita-like Equiva- lences for right xst-rings, Algebra Colloquium, 14, 85–95, 2007.
  • [16] S. Talwar, Morita equivalence for semigroups, J. Aust. Math. Soc. (Series A), 59, 81–111, 1995.
  • [17] Y.H. Xu, K.P. Shum and R.F. Turner-Smith, Morita-like equivalence of infinite matrix subrings, J. Algebra, 159, 423–435, 1993.

Morita-like equivalence for fair semigroups

Year 2020, , 19 - 29, 06.02.2020
https://doi.org/10.15672/HJMS.2018.648

Abstract

In this paper, we mainly investigate Morita-like equivalence and Morita context for right fair semigroups. If two right fair semigroups $S$ and $T$ are Morita-like equivalent, that is, there is a category equivalence $F:US-Act\rightleftharpoons:UT-Act:G,$  we characterize the two functors $F$ and $G$ using $Hom$ functor and tense product functor. Also, we investigate Morita context for right fair semigroups and obtain equivalence between two right unitary act categories.

References

  • [1] G. Abrams, Morita equivalence for rings with local units, Commun. Algebra, 11, 801–837, 1983.
  • [2] P.N. Ánh and L.Márki, Morita equivalence for rings without identity, Tsukuba J. Math. 11, 1–16, 1987.
  • [3] B. Banaschewski, Functors into categories of M-sets, Abh. Math. Sem. Univ. Ham- burg, 38, 49–64, 1972.
  • [4] K.R. Fuller, Density and equivalence, J. Algebra 29, 528–550, 1974.
  • [5] J.L. García and L.Marín, Rings having a Morita-like equivalence, Commun. Algebra, 27, 665–680, 1999.
  • [6] J.M. Howie, Fundamentals of semigroup theory, Clarendon press, Oxford, 1995.
  • [7] M. Kilp, U. Knauer and A.V. Mikhalev, Monoids Acts and Categories, Degruyter Expositions in Mathematics, 2000.
  • [8] U. Knauer, Projectivity of acts and Morita equivalence of monoids, Semigroup Forum 3, 359–370, 1972.
  • [9] V. Laan and L. Márki, Strong Morita equivalence of semigroups with local units, J. Pure Appl. Algebra, 215, 2538–2546, 2011.
  • [10] V. Laan and L. Márki, Morita invariants for semigroups with local units, Monatsh. Math. 166, 441–451, 2012.
  • [11] V. Laan and L. Márki, Fair semigroups and Morita equivalence, Semigroup Forum, 92, 633–644, 2016.
  • [12] M.V. Lawson, Morita equivalence of semigroups with local units, J. Pure Appl. Alge- bra 215, 455–470, 2011.
  • [13] H. Liu, Morita equivalence based on Morita context for arbitrary semigroups, Hacet. J. Math. Stat. 45 (4), 1083–1090, 2016.
  • [14] B.Y. Ouyang and W.T. Tong, Morita context and Morita-like equivalence for the xst-rings, Acta Math. Sinica (English Series), 19, 371–380, 2003.
  • [15] B.Y. Ouyang, L.R. Zhou and W.T. Tong, Characterizations of Morita-like Equiva- lences for right xst-rings, Algebra Colloquium, 14, 85–95, 2007.
  • [16] S. Talwar, Morita equivalence for semigroups, J. Aust. Math. Soc. (Series A), 59, 81–111, 1995.
  • [17] Y.H. Xu, K.P. Shum and R.F. Turner-Smith, Morita-like equivalence of infinite matrix subrings, J. Algebra, 159, 423–435, 1993.
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Yang Li This is me 0000-0003-0662-049X

Hongxing Liu This is me 0000-0002-3069-3990

Publication Date February 6, 2020
Published in Issue Year 2020

Cite

APA Li, Y., & Liu, H. (2020). Morita-like equivalence for fair semigroups. Hacettepe Journal of Mathematics and Statistics, 49(1), 19-29. https://doi.org/10.15672/HJMS.2018.648
AMA Li Y, Liu H. Morita-like equivalence for fair semigroups. Hacettepe Journal of Mathematics and Statistics. February 2020;49(1):19-29. doi:10.15672/HJMS.2018.648
Chicago Li, Yang, and Hongxing Liu. “Morita-Like Equivalence for Fair Semigroups”. Hacettepe Journal of Mathematics and Statistics 49, no. 1 (February 2020): 19-29. https://doi.org/10.15672/HJMS.2018.648.
EndNote Li Y, Liu H (February 1, 2020) Morita-like equivalence for fair semigroups. Hacettepe Journal of Mathematics and Statistics 49 1 19–29.
IEEE Y. Li and H. Liu, “Morita-like equivalence for fair semigroups”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 1, pp. 19–29, 2020, doi: 10.15672/HJMS.2018.648.
ISNAD Li, Yang - Liu, Hongxing. “Morita-Like Equivalence for Fair Semigroups”. Hacettepe Journal of Mathematics and Statistics 49/1 (February 2020), 19-29. https://doi.org/10.15672/HJMS.2018.648.
JAMA Li Y, Liu H. Morita-like equivalence for fair semigroups. Hacettepe Journal of Mathematics and Statistics. 2020;49:19–29.
MLA Li, Yang and Hongxing Liu. “Morita-Like Equivalence for Fair Semigroups”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 1, 2020, pp. 19-29, doi:10.15672/HJMS.2018.648.
Vancouver Li Y, Liu H. Morita-like equivalence for fair semigroups. Hacettepe Journal of Mathematics and Statistics. 2020;49(1):19-2.