Research Article
BibTex RIS Cite
Year 2020, , 56 - 67, 06.02.2020
https://doi.org/10.15672/HJMS.2018.651

Abstract

References

  • [1] M. Arif, S. Mahmood, J. Sokołand J. Dziok, New subclass of analytic functions in conical domain associated with a linear operator, Acta Math Sci, 36B(3), 1–13, 2016.
  • [2] M. Arif, S. Umar, S. Mahmood and J. Sokoł, New reciprocal class of analytic functions associated with linear operator, Iran. J. Sci. Technol. Trans. Sci., 42, 881–886, 2018.
  • [3] D.A. Brannan, On functions of bounded boundary rotations, Proc. Edinb. Math. Soc. 2, 339–347, 1968–1969.
  • [4] G. Golusin, On distortion theorems and coefficients of univalent functions, Rec. Math. [Mat. Sbornik] N.S., 19 (61), 183–202, 1946.
  • [5] A.W. Goodman, Univalent functions, Vol. I, II, Polygonal Publishing House, Wash- ington, New Jersey, 1983.
  • [6] A.W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56, 87–92, 1991.
  • [7] S. Kanas, Techniques of the differential subordination for domains bounded by conic sections, Int. J. Math. Math. Sci. 38, 2389–2400, 2003.
  • [8] S. Kanas and A. Lecko, Differential subordination for domains bounded by hyperbolas, Zeszyty Nauk. Politech. Rzeszowskiej Mat. 175 (23), 61–70, 1999.
  • [9] S. Kanas and A. Wisniowska Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105, 327–336, 1999.
  • [10] S. Kanas and A. Wiśniowska, Conic regions and k-starlike functions, Rev. Roumaine, Math. Pures Appl. 45, 647–657, 2000.
  • [11] S. Mahmood and J. Sokoł, New subclass of analytic functions in conical domain as- sociated with ruscheweyh Q-differential operator, Results Math. 71, 1345–1357, 2017.
  • [12] S. Mahmood, S.N. Malik, S. Mustafa and S.M.J. Riaz, A new subclass of k-Janowski type functions associated with Ruscheweyh derivative, J. Func. Spaces, 2017, Article ID 6095293, 7 pages, 2017.
  • [13] S.S. Miller and P.T. Mocanu, Differential subordinations theory and applications, Marcel Dekker, Inc. New York Basel, 2000.
  • [14] K.I. Noor, Higher order close-to-convex functions, Math. Japon. 37, 1–8, 1992.
  • [15] K.I. Noor, On a generalization of uniformly convex and related functions, Comp. Math. Appl. 61, 117–125, 2011.
  • [16] K.I. Noor and S.N. Malik, On a new class of analytic functions associated with conic domain, Comput. Math. Appl. 62, 367–375, 2011.
  • [17] K.I. Noor and S.N. Malik, On coefficient inequalities of functions associated with conic domains, Comput. Math. Appl. 62, 2209–2217, 2011.
  • [18] B. Pinchuk, Functions with bounded boundary rotation, Isr. J. Math. 10, 7–16, 1971.
  • [19] R.K. Raina and P. Sharma, Subordination properties of univalent functions involving a new class of operators, Electron. J. Math. Anal. Appl. 2 (1), 37–52, 2014.
  • [20] F. Rønning, Uniformly convex functions and a corresponding class of starlike func- tions, Proc. Amer. Math. Soc. 118, 189–196, 1993.
  • [21] P. Sharma, R.K. Raina and J. Sokoł, Certain subordination results involving a class of operators, Analele Univ. Oradea Fasc. Matematica, 21 (2), 89–99, 2014.

Certain classes of $k$-uniformly functions with bounded radius rotation associated with linear operator

Year 2020, , 56 - 67, 06.02.2020
https://doi.org/10.15672/HJMS.2018.651

Abstract

In this paper we use linear operator to define certain classes of analytic functions related to conic domains. Inclusion results, radius problems, rate of growth and other interesting properties are investigated.

References

  • [1] M. Arif, S. Mahmood, J. Sokołand J. Dziok, New subclass of analytic functions in conical domain associated with a linear operator, Acta Math Sci, 36B(3), 1–13, 2016.
  • [2] M. Arif, S. Umar, S. Mahmood and J. Sokoł, New reciprocal class of analytic functions associated with linear operator, Iran. J. Sci. Technol. Trans. Sci., 42, 881–886, 2018.
  • [3] D.A. Brannan, On functions of bounded boundary rotations, Proc. Edinb. Math. Soc. 2, 339–347, 1968–1969.
  • [4] G. Golusin, On distortion theorems and coefficients of univalent functions, Rec. Math. [Mat. Sbornik] N.S., 19 (61), 183–202, 1946.
  • [5] A.W. Goodman, Univalent functions, Vol. I, II, Polygonal Publishing House, Wash- ington, New Jersey, 1983.
  • [6] A.W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56, 87–92, 1991.
  • [7] S. Kanas, Techniques of the differential subordination for domains bounded by conic sections, Int. J. Math. Math. Sci. 38, 2389–2400, 2003.
  • [8] S. Kanas and A. Lecko, Differential subordination for domains bounded by hyperbolas, Zeszyty Nauk. Politech. Rzeszowskiej Mat. 175 (23), 61–70, 1999.
  • [9] S. Kanas and A. Wisniowska Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105, 327–336, 1999.
  • [10] S. Kanas and A. Wiśniowska, Conic regions and k-starlike functions, Rev. Roumaine, Math. Pures Appl. 45, 647–657, 2000.
  • [11] S. Mahmood and J. Sokoł, New subclass of analytic functions in conical domain as- sociated with ruscheweyh Q-differential operator, Results Math. 71, 1345–1357, 2017.
  • [12] S. Mahmood, S.N. Malik, S. Mustafa and S.M.J. Riaz, A new subclass of k-Janowski type functions associated with Ruscheweyh derivative, J. Func. Spaces, 2017, Article ID 6095293, 7 pages, 2017.
  • [13] S.S. Miller and P.T. Mocanu, Differential subordinations theory and applications, Marcel Dekker, Inc. New York Basel, 2000.
  • [14] K.I. Noor, Higher order close-to-convex functions, Math. Japon. 37, 1–8, 1992.
  • [15] K.I. Noor, On a generalization of uniformly convex and related functions, Comp. Math. Appl. 61, 117–125, 2011.
  • [16] K.I. Noor and S.N. Malik, On a new class of analytic functions associated with conic domain, Comput. Math. Appl. 62, 367–375, 2011.
  • [17] K.I. Noor and S.N. Malik, On coefficient inequalities of functions associated with conic domains, Comput. Math. Appl. 62, 2209–2217, 2011.
  • [18] B. Pinchuk, Functions with bounded boundary rotation, Isr. J. Math. 10, 7–16, 1971.
  • [19] R.K. Raina and P. Sharma, Subordination properties of univalent functions involving a new class of operators, Electron. J. Math. Anal. Appl. 2 (1), 37–52, 2014.
  • [20] F. Rønning, Uniformly convex functions and a corresponding class of starlike func- tions, Proc. Amer. Math. Soc. 118, 189–196, 1993.
  • [21] P. Sharma, R.K. Raina and J. Sokoł, Certain subordination results involving a class of operators, Analele Univ. Oradea Fasc. Matematica, 21 (2), 89–99, 2014.
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Shahid Mehmood 0000-0002-7222-8181

Saima Mustafa 0000-0002-0584-1445

Publication Date February 6, 2020
Published in Issue Year 2020

Cite

APA Mehmood, S., & Mustafa, S. (2020). Certain classes of $k$-uniformly functions with bounded radius rotation associated with linear operator. Hacettepe Journal of Mathematics and Statistics, 49(1), 56-67. https://doi.org/10.15672/HJMS.2018.651
AMA Mehmood S, Mustafa S. Certain classes of $k$-uniformly functions with bounded radius rotation associated with linear operator. Hacettepe Journal of Mathematics and Statistics. February 2020;49(1):56-67. doi:10.15672/HJMS.2018.651
Chicago Mehmood, Shahid, and Saima Mustafa. “Certain Classes of $k$-Uniformly Functions With Bounded Radius Rotation Associated With Linear Operator”. Hacettepe Journal of Mathematics and Statistics 49, no. 1 (February 2020): 56-67. https://doi.org/10.15672/HJMS.2018.651.
EndNote Mehmood S, Mustafa S (February 1, 2020) Certain classes of $k$-uniformly functions with bounded radius rotation associated with linear operator. Hacettepe Journal of Mathematics and Statistics 49 1 56–67.
IEEE S. Mehmood and S. Mustafa, “Certain classes of $k$-uniformly functions with bounded radius rotation associated with linear operator”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 1, pp. 56–67, 2020, doi: 10.15672/HJMS.2018.651.
ISNAD Mehmood, Shahid - Mustafa, Saima. “Certain Classes of $k$-Uniformly Functions With Bounded Radius Rotation Associated With Linear Operator”. Hacettepe Journal of Mathematics and Statistics 49/1 (February 2020), 56-67. https://doi.org/10.15672/HJMS.2018.651.
JAMA Mehmood S, Mustafa S. Certain classes of $k$-uniformly functions with bounded radius rotation associated with linear operator. Hacettepe Journal of Mathematics and Statistics. 2020;49:56–67.
MLA Mehmood, Shahid and Saima Mustafa. “Certain Classes of $k$-Uniformly Functions With Bounded Radius Rotation Associated With Linear Operator”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 1, 2020, pp. 56-67, doi:10.15672/HJMS.2018.651.
Vancouver Mehmood S, Mustafa S. Certain classes of $k$-uniformly functions with bounded radius rotation associated with linear operator. Hacettepe Journal of Mathematics and Statistics. 2020;49(1):56-67.