In this paper, we study the quenching behavior of solution of a nonlin- ear parabolic equation with a singular boundary condition. We prove finite-time quenching for the solution. Further, we show that quench- ing occurs on the boundary under certain conditions. Furthermore, we show that the time derivative blows up at quenching point. Also, we get a lower solution and an upper bound for quenching time. Finally, we get a quenching rate and lower bounds for quenching time.
Nonlinear parabolic equation singular boundary condition quench- ing quenching point quenching time maximum principles
Primary Language | English |
---|---|
Subjects | Mathematical Sciences |
Journal Section | Mathematics |
Authors | |
Publication Date | June 1, 2015 |
Published in Issue | Year 2015 |