Year 2020,
, 1915 - 1925, 08.12.2020
Walaa Nabil Taha Fasfous
Rajat Nath
,
Reza Sharafdini
References
- [1] A. Abdollahi, Commuting graphs of full matrix rings over finite fields, Linear Algebra
Appl. 428, 2947–2954, 2008.
- [2] M. Afkhami, Z. Barati, N. Hoseini and K. Khashyarmanesh, A generalization of
commuting graphs, Discrete Math. Algorithm. Appl. 7 (1), 1450068 (11 pages), 2015.
- [3] S. Akbari, M. Ghandehari, M. Hadian and A. Mohammadian, On commuting graphs
of semisimple rings, Linear Algebra Appl. 390, 345–355, 2004.
- [4] S.M. Buckley, D. Machale, and A.N. Sh´e, Finite rings with many commuting pairs of
elements, available at http://archive.maths.nuim.ie/staff/sbuckley/Papers/
bms.pdf.
- [5] J. Dutta and R.K. Nath, Rings having four distinct centralizers, Matrix, M. R. Publications,
Assam, 2017, pp. 12–18, Ed. P. Begum.
- [6] P. Dutta and R.K. Nath, A generalization of commuting probability of finite rings,
Asian-European J. Math. 11 (2), 1850023 (15 pages), 2018.
- [7] P. Dutta and R.K. Nath, On relative commuting probability of finite rings, Miskolc
Math. Notes 20 (1), 225–232, 2019.
- [8] J. Dutta, D.K. Basnet and R.K. Nath, On commuting probability of finite rings, Indag.
Math. 28 (2), 272–282, 2017.
- [9] J. Dutta, D.K. Basnet and R.K. Nath, On generalized non-commuting graph of a
finite ring, Algebra Colloq. 25 (1), 149–160, 2018.
- [10] J. Dutta, D.K. Basnet and R.K. Nath, A note on n-centralizer finite rings, An. Stiint.
Univ. Al. I. Cuza Iasi Math. LXIV (f.1), 161–171, 2018.
- [11] J. Dutta, D.K. Basnet and R.K. Nath, Characterizing some rings of finite order,
submitted for publication, available at https://arxiv.org/pdf/1510.08207.pdf.
- [12] J. Dutta, W.N.T. Fasfous and R.K. Nath, Spectrum and genus of commuting graphs
of some classes of finite rings, Acta Comment. Univ. Tartu. Math. 23 (1), 5–12, 2019.
- [13] A. Erfanian, K. Khashyarmanesh and Kh. Nafar, Non-commuting graphs of rings,
Discrete Math. Algorithm. Appl. 7 (3), 1550027 (7 pages), 2015.
- [14] S.C. Gong, X. Li, G.H. Xu, I. Gutman and B. Furtula, Borderenergetic graphs,
MATCH Commun. Math. Comput. Chem. 74, 321–332, 2015.
- [15] I. Gutman, Hyperenergetic molecular graphs, J. Serb. Chem. Soc. 64, 199–205, 1999.
- [16] D. MacHale, Commutativity in finite rings, Amer. Math. Monthly, 83, 30–32, 1976.
- [17] A. Mohammadian, On commuting graphs of finite matrix rings, Comm. Algebra 38,
988–994, 2010.
- [18] R.K. Nath, Various spectra of commuting graphs of n-centralizer finite groups, J. Eng.
Science and Tech. 10 (2S), 170–172, 2018.
- [19] R.K. Nath, A note on super integral rings, Bol. Soc. Paran. Mat. 38 (4), 213–218,
2020.
- [20] G.R. Omidi and E. Vatandoost, On the commuting graph of rings, J. Algebra Appl.
10 (3), 521–527, 2011.
- [21] F. Tura, L-borderenergetic graphs, MATCH Commun. Math. Comput. Chem. 77,
37–44, 2017.
- [22] E. Vatandoost and F. Ramezani, On the commuting graph of some non-commutative
rings with unity, J. Linear Topological Algebra, 5 (4), 289–294, 2016.
- [23] E. Vatandoost, F. Ramezani and A. Bahraini, On the commuting graph of noncommutative
rings of order $p^n q$, J. Linear Topological Algebra, 3 (1), 1–6, 2014.
- [24] H.B. Walikar, H.S. Ramane and P.R. Hampiholi, On the energy of a graph, Graph
Connections, Eds. R. Balakrishnan, H.M. Mulder, A. Vijayakumar., pp. 120–123,
Allied Publishers, New Delhi, 1999.
Various spectra and energies of commuting graphs of finite rings
Year 2020,
, 1915 - 1925, 08.12.2020
Walaa Nabil Taha Fasfous
Rajat Nath
,
Reza Sharafdini
Abstract
The commuting graph of a non-commutative ring $R$ with center $Z(R)$ is a simple undirected graph whose vertex set is $R\setminus Z(R)$ and two vertices $x, y$ are adjacent if and only if $xy = yx$. In this paper, we compute various spectra and energies of commuting graphs of some classes of finite rings and study their consequences.
References
- [1] A. Abdollahi, Commuting graphs of full matrix rings over finite fields, Linear Algebra
Appl. 428, 2947–2954, 2008.
- [2] M. Afkhami, Z. Barati, N. Hoseini and K. Khashyarmanesh, A generalization of
commuting graphs, Discrete Math. Algorithm. Appl. 7 (1), 1450068 (11 pages), 2015.
- [3] S. Akbari, M. Ghandehari, M. Hadian and A. Mohammadian, On commuting graphs
of semisimple rings, Linear Algebra Appl. 390, 345–355, 2004.
- [4] S.M. Buckley, D. Machale, and A.N. Sh´e, Finite rings with many commuting pairs of
elements, available at http://archive.maths.nuim.ie/staff/sbuckley/Papers/
bms.pdf.
- [5] J. Dutta and R.K. Nath, Rings having four distinct centralizers, Matrix, M. R. Publications,
Assam, 2017, pp. 12–18, Ed. P. Begum.
- [6] P. Dutta and R.K. Nath, A generalization of commuting probability of finite rings,
Asian-European J. Math. 11 (2), 1850023 (15 pages), 2018.
- [7] P. Dutta and R.K. Nath, On relative commuting probability of finite rings, Miskolc
Math. Notes 20 (1), 225–232, 2019.
- [8] J. Dutta, D.K. Basnet and R.K. Nath, On commuting probability of finite rings, Indag.
Math. 28 (2), 272–282, 2017.
- [9] J. Dutta, D.K. Basnet and R.K. Nath, On generalized non-commuting graph of a
finite ring, Algebra Colloq. 25 (1), 149–160, 2018.
- [10] J. Dutta, D.K. Basnet and R.K. Nath, A note on n-centralizer finite rings, An. Stiint.
Univ. Al. I. Cuza Iasi Math. LXIV (f.1), 161–171, 2018.
- [11] J. Dutta, D.K. Basnet and R.K. Nath, Characterizing some rings of finite order,
submitted for publication, available at https://arxiv.org/pdf/1510.08207.pdf.
- [12] J. Dutta, W.N.T. Fasfous and R.K. Nath, Spectrum and genus of commuting graphs
of some classes of finite rings, Acta Comment. Univ. Tartu. Math. 23 (1), 5–12, 2019.
- [13] A. Erfanian, K. Khashyarmanesh and Kh. Nafar, Non-commuting graphs of rings,
Discrete Math. Algorithm. Appl. 7 (3), 1550027 (7 pages), 2015.
- [14] S.C. Gong, X. Li, G.H. Xu, I. Gutman and B. Furtula, Borderenergetic graphs,
MATCH Commun. Math. Comput. Chem. 74, 321–332, 2015.
- [15] I. Gutman, Hyperenergetic molecular graphs, J. Serb. Chem. Soc. 64, 199–205, 1999.
- [16] D. MacHale, Commutativity in finite rings, Amer. Math. Monthly, 83, 30–32, 1976.
- [17] A. Mohammadian, On commuting graphs of finite matrix rings, Comm. Algebra 38,
988–994, 2010.
- [18] R.K. Nath, Various spectra of commuting graphs of n-centralizer finite groups, J. Eng.
Science and Tech. 10 (2S), 170–172, 2018.
- [19] R.K. Nath, A note on super integral rings, Bol. Soc. Paran. Mat. 38 (4), 213–218,
2020.
- [20] G.R. Omidi and E. Vatandoost, On the commuting graph of rings, J. Algebra Appl.
10 (3), 521–527, 2011.
- [21] F. Tura, L-borderenergetic graphs, MATCH Commun. Math. Comput. Chem. 77,
37–44, 2017.
- [22] E. Vatandoost and F. Ramezani, On the commuting graph of some non-commutative
rings with unity, J. Linear Topological Algebra, 5 (4), 289–294, 2016.
- [23] E. Vatandoost, F. Ramezani and A. Bahraini, On the commuting graph of noncommutative
rings of order $p^n q$, J. Linear Topological Algebra, 3 (1), 1–6, 2014.
- [24] H.B. Walikar, H.S. Ramane and P.R. Hampiholi, On the energy of a graph, Graph
Connections, Eds. R. Balakrishnan, H.M. Mulder, A. Vijayakumar., pp. 120–123,
Allied Publishers, New Delhi, 1999.