Research Article
BibTex RIS Cite
Year 2020, , 195 - 207, 06.02.2020
https://doi.org/10.15672/hujms.546348

Abstract

References

  • [1] D. Amic, D. Beslo, B. Lucic, S. Nikolic, N. Trinajstic, The vertex-connectivity index revisited, J. Chem. Inf. Comput. Sci. 38, 819-822, 1998.
  • [2] M. Bača, J. Horváthová, M. Mokrišová, A. Suhányiová, On topological indices of fullerenes, Appl. Math. Comput. 251, 154-161, 2015.
  • [3] R.J. Bie, M. K. Siddiqui, R. Razavi, M. Taherkhani, M. Najaf, Possibility of C38 and Si19Ge19 Nanocages in Anode of Metal Ion Batteries: Computational Examination, Acta Chim. Slov. 65, 303-311, 2018.
  • [4] B. Bollob´as, P. Erdos, Graphs of extremal weights, Ars. Combi. 50, 225-233, 1998.
  • [5] C.R.A. Catlow, Modelling and predicting crystal structures, Interdisciplinary. Sci. Reviews. 40 294-307, 2015.
  • [6] G. Caporossi, I. Gutman, P. Hansen, L. Pavlovic, Graphs with maximum connectivity index, Comput. Bio. Chem. 27, 85-90, 2003.
  • [7] J.H. Conway, N.J.A. Sloane, Sphere packings, lattices, and groups, 2nd ed, Springer- Verlag, New York, 1993.
  • [8] A.A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: Theory and applications, Acta. Appl. Math. 66, 211-249, 2001.
  • [9] T. Doslic, Vertex-weighted Wiener polynomials for composite graphs, Ars. Math.Contemp. 1, 66-80, 2008.
  • [10] E. Estrada, L. Torres, L. Rodr´iguez, I. Gutman, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, Indian. J. Chem. 37A, 849-855, 1998.
  • [11] W. Gao and M. K. Siddiqui, Molecular Descriptors of Nanotube, Oxide, Silicate, and Triangulene Networks, J. of. Chem., 2017, 1–10, 2017.
  • [12] W. Gao, M. K. Siddiqui, M. Imran, M. K. Jamil, M.R. Farahani, Forgotten Topological Index of Chemical Structure in Drugs, Saudi Pharm. J. 24, 258-267, 2016.
  • [13] W. Gharibi, A. Ahmad, M. K. Siddiqui, On Zagreb Indices, Zagreb Polynomials of Nanocone and Nanotubes, J. Comput. Theor. Nanosci. 13, 5086-5092, 2016.
  • [14] I. Gutman, C. N. Das, The first Zagreb index 30 years after, MATCH. Commun. Math. Comput. Chem. 50, 83-92, 2004.
  • [15] I. Gutman, K. C. Das, Some Properties of the Second Zagreb Index, MATCH. Commun. Math. Comput. Chem. 50, 103-112, 2004.
  • [16] I. Gutman, B. Furtula , Z. K. Vukicevic, G. Popivoda, On Zagreb indices and Coindices , MATCH. Commun. Math. Comput. Chemmm. 74, 5-16, 2015.
  • [17] I. Gutman, N. Trinajst, Graph theory and molecular orbitals, Total $\pi$-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17, 535-538, 1972.
  • [18] S.M. Hosamani, Computing Sanskruti index of certain nanostructures, J. Appl. Math. Comput. 54, 425–433, 2016.
  • [19] M. Imran, M.K. Siddiqui, M. Naeem, and M.A. Iqbal, On Topological Properties of Symmetric Chemical Structures, Symmetry 10, 1–20, 2018.
  • [20] J.B. Liu, M.K. Siddiqui, M.A. Zahid, M. Naeem, and A.Q. Baig, Topological Properties of Crystallographic Structure of Molecules, Symmetry 10, 1–18, 2018.
  • [21] X. Li, I. Gutman, Mathematical aspects of Randic type molecular structure descriptors, Mathematical chemistry monographs No. 1, Kragujevac, 2006.
  • [22] H. Mujahed, B. Nagy, Exact formula for computing the hyper-Wiener index on rows of unit cells of the face-centred cubic lattice, An. S.t. Univ. Ovidius Constant. 26 (1), 169–187, 2018.
  • [23] M. Randic, On characterization of molecular branching, J. Amer. Chem. Soc. 97 (23), 6609–6615, 1975.
  • [24] Z. Shao, M. K. Siddiqui, and M. H. Muhammad, Computing Zagreb indices and Zagreb polynomials for symmetrical nanotubes, Symmetry. 10(7), 1-16, 2018.
  • [25] M.K. Siddiqui , W. Gharibi, On Zagreb indices, Zagreb polynomials of mesh derived networks, J. Comput. Theor. Nanosci. 13, 8683–8688, 2016.
  • [26] M.K. Siddiqui, M. Imran, and A. Ali, On Zagreb indices, Zagreb polynomials of some nanostar dendrimers, Appl. Math. Comput. 280, 132–139, 2016.
  • [27] M.K. Siddiqui, M. Naeem, N.A. Rahman, and M. Imran, Computing topological indices of certain networks, J. Opto. Adva. Mate. 18 (9-10), 884–892, 2016.
  • [28] D. Vukicevic, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46, 1369–1376, 2009.
  • [29] C. Wang, J. Liu, and S. Wang, Sharp upper bounds for multiplicative Zagreb indices of bipartite graphs with given diameter, Disc. Appl. Math. 227, 156–165, 2017.
  • [30] S. Wang, C. Wang, and J. Liu, On extremal multiplicative Zagreb indices of trees with given domination number, Appl. Math. Comput. 332, 338–350, 2018.
  • [31] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69, 17–20, 1947.

Topological properties of face-centred cubic lattice

Year 2020, , 195 - 207, 06.02.2020
https://doi.org/10.15672/hujms.546348

Abstract

Face-centred cubic lattice $FCC(n)$ has attracted large attention in recent years owing to its distinguished properties and non-toxic nature, low-cost, abundance, and simple fabrication process. The graphs of face-centred cubic lattice contain cube points and face centres. A topological index of a chemical graph $G$ is a numeric quantity related to $G$ which describes its topological properties. In this paper, using graph theory tools, we determine the topological indices namely, Randic index, atomic bond connectivity index, Zagreb types indices, Sanskruti index for face-centred cubic lattice $FCC(n)$.

References

  • [1] D. Amic, D. Beslo, B. Lucic, S. Nikolic, N. Trinajstic, The vertex-connectivity index revisited, J. Chem. Inf. Comput. Sci. 38, 819-822, 1998.
  • [2] M. Bača, J. Horváthová, M. Mokrišová, A. Suhányiová, On topological indices of fullerenes, Appl. Math. Comput. 251, 154-161, 2015.
  • [3] R.J. Bie, M. K. Siddiqui, R. Razavi, M. Taherkhani, M. Najaf, Possibility of C38 and Si19Ge19 Nanocages in Anode of Metal Ion Batteries: Computational Examination, Acta Chim. Slov. 65, 303-311, 2018.
  • [4] B. Bollob´as, P. Erdos, Graphs of extremal weights, Ars. Combi. 50, 225-233, 1998.
  • [5] C.R.A. Catlow, Modelling and predicting crystal structures, Interdisciplinary. Sci. Reviews. 40 294-307, 2015.
  • [6] G. Caporossi, I. Gutman, P. Hansen, L. Pavlovic, Graphs with maximum connectivity index, Comput. Bio. Chem. 27, 85-90, 2003.
  • [7] J.H. Conway, N.J.A. Sloane, Sphere packings, lattices, and groups, 2nd ed, Springer- Verlag, New York, 1993.
  • [8] A.A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: Theory and applications, Acta. Appl. Math. 66, 211-249, 2001.
  • [9] T. Doslic, Vertex-weighted Wiener polynomials for composite graphs, Ars. Math.Contemp. 1, 66-80, 2008.
  • [10] E. Estrada, L. Torres, L. Rodr´iguez, I. Gutman, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, Indian. J. Chem. 37A, 849-855, 1998.
  • [11] W. Gao and M. K. Siddiqui, Molecular Descriptors of Nanotube, Oxide, Silicate, and Triangulene Networks, J. of. Chem., 2017, 1–10, 2017.
  • [12] W. Gao, M. K. Siddiqui, M. Imran, M. K. Jamil, M.R. Farahani, Forgotten Topological Index of Chemical Structure in Drugs, Saudi Pharm. J. 24, 258-267, 2016.
  • [13] W. Gharibi, A. Ahmad, M. K. Siddiqui, On Zagreb Indices, Zagreb Polynomials of Nanocone and Nanotubes, J. Comput. Theor. Nanosci. 13, 5086-5092, 2016.
  • [14] I. Gutman, C. N. Das, The first Zagreb index 30 years after, MATCH. Commun. Math. Comput. Chem. 50, 83-92, 2004.
  • [15] I. Gutman, K. C. Das, Some Properties of the Second Zagreb Index, MATCH. Commun. Math. Comput. Chem. 50, 103-112, 2004.
  • [16] I. Gutman, B. Furtula , Z. K. Vukicevic, G. Popivoda, On Zagreb indices and Coindices , MATCH. Commun. Math. Comput. Chemmm. 74, 5-16, 2015.
  • [17] I. Gutman, N. Trinajst, Graph theory and molecular orbitals, Total $\pi$-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17, 535-538, 1972.
  • [18] S.M. Hosamani, Computing Sanskruti index of certain nanostructures, J. Appl. Math. Comput. 54, 425–433, 2016.
  • [19] M. Imran, M.K. Siddiqui, M. Naeem, and M.A. Iqbal, On Topological Properties of Symmetric Chemical Structures, Symmetry 10, 1–20, 2018.
  • [20] J.B. Liu, M.K. Siddiqui, M.A. Zahid, M. Naeem, and A.Q. Baig, Topological Properties of Crystallographic Structure of Molecules, Symmetry 10, 1–18, 2018.
  • [21] X. Li, I. Gutman, Mathematical aspects of Randic type molecular structure descriptors, Mathematical chemistry monographs No. 1, Kragujevac, 2006.
  • [22] H. Mujahed, B. Nagy, Exact formula for computing the hyper-Wiener index on rows of unit cells of the face-centred cubic lattice, An. S.t. Univ. Ovidius Constant. 26 (1), 169–187, 2018.
  • [23] M. Randic, On characterization of molecular branching, J. Amer. Chem. Soc. 97 (23), 6609–6615, 1975.
  • [24] Z. Shao, M. K. Siddiqui, and M. H. Muhammad, Computing Zagreb indices and Zagreb polynomials for symmetrical nanotubes, Symmetry. 10(7), 1-16, 2018.
  • [25] M.K. Siddiqui , W. Gharibi, On Zagreb indices, Zagreb polynomials of mesh derived networks, J. Comput. Theor. Nanosci. 13, 8683–8688, 2016.
  • [26] M.K. Siddiqui, M. Imran, and A. Ali, On Zagreb indices, Zagreb polynomials of some nanostar dendrimers, Appl. Math. Comput. 280, 132–139, 2016.
  • [27] M.K. Siddiqui, M. Naeem, N.A. Rahman, and M. Imran, Computing topological indices of certain networks, J. Opto. Adva. Mate. 18 (9-10), 884–892, 2016.
  • [28] D. Vukicevic, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46, 1369–1376, 2009.
  • [29] C. Wang, J. Liu, and S. Wang, Sharp upper bounds for multiplicative Zagreb indices of bipartite graphs with given diameter, Disc. Appl. Math. 227, 156–165, 2017.
  • [30] S. Wang, C. Wang, and J. Liu, On extremal multiplicative Zagreb indices of trees with given domination number, Appl. Math. Comput. 332, 338–350, 2018.
  • [31] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69, 17–20, 1947.
There are 31 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Muhammad Kamran Siddiqui 0000-0002-2607-4847

Muhammad Imran 0000-0002-2827-0462

Muhammad Saeed This is me 0000-0002-3296-5961

Publication Date February 6, 2020
Published in Issue Year 2020

Cite

APA Siddiqui, M. K., Imran, M., & Saeed, M. (2020). Topological properties of face-centred cubic lattice. Hacettepe Journal of Mathematics and Statistics, 49(1), 195-207. https://doi.org/10.15672/hujms.546348
AMA Siddiqui MK, Imran M, Saeed M. Topological properties of face-centred cubic lattice. Hacettepe Journal of Mathematics and Statistics. February 2020;49(1):195-207. doi:10.15672/hujms.546348
Chicago Siddiqui, Muhammad Kamran, Muhammad Imran, and Muhammad Saeed. “Topological Properties of Face-Centred Cubic Lattice”. Hacettepe Journal of Mathematics and Statistics 49, no. 1 (February 2020): 195-207. https://doi.org/10.15672/hujms.546348.
EndNote Siddiqui MK, Imran M, Saeed M (February 1, 2020) Topological properties of face-centred cubic lattice. Hacettepe Journal of Mathematics and Statistics 49 1 195–207.
IEEE M. K. Siddiqui, M. Imran, and M. Saeed, “Topological properties of face-centred cubic lattice”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 1, pp. 195–207, 2020, doi: 10.15672/hujms.546348.
ISNAD Siddiqui, Muhammad Kamran et al. “Topological Properties of Face-Centred Cubic Lattice”. Hacettepe Journal of Mathematics and Statistics 49/1 (February 2020), 195-207. https://doi.org/10.15672/hujms.546348.
JAMA Siddiqui MK, Imran M, Saeed M. Topological properties of face-centred cubic lattice. Hacettepe Journal of Mathematics and Statistics. 2020;49:195–207.
MLA Siddiqui, Muhammad Kamran et al. “Topological Properties of Face-Centred Cubic Lattice”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 1, 2020, pp. 195-07, doi:10.15672/hujms.546348.
Vancouver Siddiqui MK, Imran M, Saeed M. Topological properties of face-centred cubic lattice. Hacettepe Journal of Mathematics and Statistics. 2020;49(1):195-207.

Cited By