Research Article
BibTex RIS Cite

On some topological properties of intuitionistic $2$-fuzzy $n$-normed linear spaces

Year 2020, , 208 - 220, 06.02.2020
https://doi.org/10.15672/hujms.546973

Abstract

Motivated by the notion of $n$-norm due to Gähler, in this article we define the concept of intuitionistic $2$-fuzzy $n$-normed space in general setting of $t$-norm as a generalization of intuitionistic fuzzy normed space  in the sense of Bag and Samanta. Further we define the notion of $\alpha$-$n$-norm corresponding to intuitionistic $2$-fuzzy $n$-norm. In addition, we discuss some basic properties of convergence and completeness for intuitionistic $2$-fuzzy $n$-normed spaces.

References

  • [1] K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst. 20 (1), 87–96, 1986.
  • [2] K.T. Atanassov, More on intuitionistic fuzzy sets, Fuzzy Sets Syst. 33 (1), 37–45, 1989.
  • [3] T. Bag and S.K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11 (3), 687–705, 2003.
  • [4] T. Bag and S.K. Samanta, Finite dimensional intuitionistic fuzzy normed linear spaces, Ann. Fuzzy Math. Inform. 6 (2), 45–57, 2013.
  • [5] D. Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets Syst. 88 (1), 81–89, 1997.
  • [6] S. Gähler, Lineare 2-normierte Räume, Math. Nachr. 28 (1-2), 1–43, 1964.
  • [7] S. Gähler, Untersuchungen über verallgemeinerte m-metrische Räume, Math. Nachr. 40 (1-3), 165–189, 1969.
  • [8] R. Giles, A computer program for fuzzy reasoning, Fuzzy Sets Syst. 4 (3), 221–234, 1980.
  • [9] H. Gunawan and M. Mashadi, On n-normed spaces, Internat. J. Math. Math. Sci. 27 (10), 631–639, 2001.
  • [10] L. Hong and J.-Q. Sun, Bifurcations of fuzzy nonlinear dynamical systems, Commun. Nonlinear Sci. Numer. Simul. 11 (1), 1–12, 2006.
  • [11] S.S. Kim and Y.J. Cho, Strict convexity in linear n-normed spaces, Demonstratio Math. 29 (4), 739–744, 1996.
  • [12] A. Misiak, n-inner product spaces, Math. Nachr. 140 (1), 299–319, 1989.
  • [13] M. Mursaleen and Q.M. Danish Lohani, Intuitionistic fuzzy 2-normed space and some related concepts, Chaos Solitons Fract. 42 (1), 224–234, 2009.
  • [14] A.L. Narayanan and S. Vijayabalaji, Fuzzy n-normed linear spaces, Internat. J. Math. Math. Sci. 24, 3963–3977, 2005.
  • [15] J.H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons Fract. 22 (5), 1039–1046, 2004.
  • [16] C. Park and C. Alaca, An introduction to 2-fuzzy n-normed linear spaces and a new perspective to the Mazur-Ulam problem, J. Inequal. Appl. 14, 2012.
  • [17] M.H.M. Rashid and Lj.D.R. Kočinac, Ideal convergence in 2-fuzzy 2-normed spaces, Hacet. J. Math. Stat. 46 (1), 145–159, 2017.
  • [18] R. Saadati and J.H. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitons Fract. 27 (2), 331–344, 2006.
  • [19] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1), 313–334, 1960.
  • [20] R.M. Somasundaram and T. Beaula, Some aspects of 2-fuzzy 2-normed linear spaces, Bull. Malays. Math. Sci. Soc. 32 (2), 211–221, 2009.
  • [21] L.A. Zadeh, Fuzzy sets, Inform. and Control 8 (3), 338–353, 1965.
Year 2020, , 208 - 220, 06.02.2020
https://doi.org/10.15672/hujms.546973

Abstract

References

  • [1] K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst. 20 (1), 87–96, 1986.
  • [2] K.T. Atanassov, More on intuitionistic fuzzy sets, Fuzzy Sets Syst. 33 (1), 37–45, 1989.
  • [3] T. Bag and S.K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11 (3), 687–705, 2003.
  • [4] T. Bag and S.K. Samanta, Finite dimensional intuitionistic fuzzy normed linear spaces, Ann. Fuzzy Math. Inform. 6 (2), 45–57, 2013.
  • [5] D. Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets Syst. 88 (1), 81–89, 1997.
  • [6] S. Gähler, Lineare 2-normierte Räume, Math. Nachr. 28 (1-2), 1–43, 1964.
  • [7] S. Gähler, Untersuchungen über verallgemeinerte m-metrische Räume, Math. Nachr. 40 (1-3), 165–189, 1969.
  • [8] R. Giles, A computer program for fuzzy reasoning, Fuzzy Sets Syst. 4 (3), 221–234, 1980.
  • [9] H. Gunawan and M. Mashadi, On n-normed spaces, Internat. J. Math. Math. Sci. 27 (10), 631–639, 2001.
  • [10] L. Hong and J.-Q. Sun, Bifurcations of fuzzy nonlinear dynamical systems, Commun. Nonlinear Sci. Numer. Simul. 11 (1), 1–12, 2006.
  • [11] S.S. Kim and Y.J. Cho, Strict convexity in linear n-normed spaces, Demonstratio Math. 29 (4), 739–744, 1996.
  • [12] A. Misiak, n-inner product spaces, Math. Nachr. 140 (1), 299–319, 1989.
  • [13] M. Mursaleen and Q.M. Danish Lohani, Intuitionistic fuzzy 2-normed space and some related concepts, Chaos Solitons Fract. 42 (1), 224–234, 2009.
  • [14] A.L. Narayanan and S. Vijayabalaji, Fuzzy n-normed linear spaces, Internat. J. Math. Math. Sci. 24, 3963–3977, 2005.
  • [15] J.H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons Fract. 22 (5), 1039–1046, 2004.
  • [16] C. Park and C. Alaca, An introduction to 2-fuzzy n-normed linear spaces and a new perspective to the Mazur-Ulam problem, J. Inequal. Appl. 14, 2012.
  • [17] M.H.M. Rashid and Lj.D.R. Kočinac, Ideal convergence in 2-fuzzy 2-normed spaces, Hacet. J. Math. Stat. 46 (1), 145–159, 2017.
  • [18] R. Saadati and J.H. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitons Fract. 27 (2), 331–344, 2006.
  • [19] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1), 313–334, 1960.
  • [20] R.M. Somasundaram and T. Beaula, Some aspects of 2-fuzzy 2-normed linear spaces, Bull. Malays. Math. Sci. Soc. 32 (2), 211–221, 2009.
  • [21] L.A. Zadeh, Fuzzy sets, Inform. and Control 8 (3), 338–353, 1965.
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Ljubiša D. R. Kočinac 0000-0002-4870-7908

Vakeel Ahmad Khan 0000-0002-4132-0954

K.m.a.s. Alshlool This is me 0000-0003-0029-2405

H. Altaf This is me 0000-0002-6120-0503

Publication Date February 6, 2020
Published in Issue Year 2020

Cite

APA Kočinac, L. D. R., Khan, V. A., Alshlool, K., Altaf, H. (2020). On some topological properties of intuitionistic $2$-fuzzy $n$-normed linear spaces. Hacettepe Journal of Mathematics and Statistics, 49(1), 208-220. https://doi.org/10.15672/hujms.546973
AMA Kočinac LDR, Khan VA, Alshlool K, Altaf H. On some topological properties of intuitionistic $2$-fuzzy $n$-normed linear spaces. Hacettepe Journal of Mathematics and Statistics. February 2020;49(1):208-220. doi:10.15672/hujms.546973
Chicago Kočinac, Ljubiša D. R., Vakeel Ahmad Khan, K.m.a.s. Alshlool, and H. Altaf. “On Some Topological Properties of Intuitionistic $2$-Fuzzy $n$-Normed Linear Spaces”. Hacettepe Journal of Mathematics and Statistics 49, no. 1 (February 2020): 208-20. https://doi.org/10.15672/hujms.546973.
EndNote Kočinac LDR, Khan VA, Alshlool K, Altaf H (February 1, 2020) On some topological properties of intuitionistic $2$-fuzzy $n$-normed linear spaces. Hacettepe Journal of Mathematics and Statistics 49 1 208–220.
IEEE L. D. R. Kočinac, V. A. Khan, K. Alshlool, and H. Altaf, “On some topological properties of intuitionistic $2$-fuzzy $n$-normed linear spaces”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 1, pp. 208–220, 2020, doi: 10.15672/hujms.546973.
ISNAD Kočinac, Ljubiša D. R. et al. “On Some Topological Properties of Intuitionistic $2$-Fuzzy $n$-Normed Linear Spaces”. Hacettepe Journal of Mathematics and Statistics 49/1 (February 2020), 208-220. https://doi.org/10.15672/hujms.546973.
JAMA Kočinac LDR, Khan VA, Alshlool K, Altaf H. On some topological properties of intuitionistic $2$-fuzzy $n$-normed linear spaces. Hacettepe Journal of Mathematics and Statistics. 2020;49:208–220.
MLA Kočinac, Ljubiša D. R. et al. “On Some Topological Properties of Intuitionistic $2$-Fuzzy $n$-Normed Linear Spaces”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 1, 2020, pp. 208-20, doi:10.15672/hujms.546973.
Vancouver Kočinac LDR, Khan VA, Alshlool K, Altaf H. On some topological properties of intuitionistic $2$-fuzzy $n$-normed linear spaces. Hacettepe Journal of Mathematics and Statistics. 2020;49(1):208-20.