Research Article
BibTex RIS Cite
Year 2020, , 1611 - 1624, 06.10.2020
https://doi.org/10.15672/hujms.548103

Abstract

References

  • [1] W.N. Bailey, Generalized Hypergeometric Series, Cambridge University Press, Cambridge, 1935.
  • [2] W.N. Bailey, Series of hypergeometric type which are infinite in both directions, Quart. J. Math. 7, 105–115, 1936.
  • [3] T.J.I’A. Bromwich, An Introduction to the Theory of Infinite Series (2nd ed), Macmillan, New York, 1959.
  • [4] X.J. Chen and W. Chu, Closed formulae for a class of terminating $_3F_2(4)$-series, Integral Transforms Spec. Funct. 28 (11), 825–837, 2017.
  • [5] X.J. Chen and W. Chu, Terminating $_3F_2(4)$-series extended with three integer parameters, J. Difference Equ. Appl. 24 (8), 1346–1367, 2018.
  • [6] W. Chu, Abel’s lemma on summation by parts and Ramanujan’s $_1\psi_1$-series Identity, Aequationes Math. 72 (1-2), 172–176, 2006.
  • [7] W. Chu, Abel’s method on summation by parts and hypergeometric series, J. Difference Equ. Appl. 12 (8), 783–798, 2006.
  • [8] W. Chu, Bailey’s very well–poised ${_6\psi_6}$-series identity, J. Combin. Theory Ser. 113 (6), 966–979, 2006.
  • [9] W. Chu, Abel’s lemma on summation by parts and basic hypergeometric series, Adv. Appl. Math. 39 (4), 490–514, 2007.
  • [10] W. Chu, Asymptotic method for Dougall’s bilateral hypergeometric sums, Bull. Sci. Math. 131 (5), 457–468, 2007.
  • [11] W. Chu, q-extensions of Dougall’s bilateral ${_2H_2}$-series, Ramanujan J. 25 (1), 121–139, 2011.
  • [12] W. Chu, Evaluation of nonterminating hypergeometric $_3F_2(\frac34)$-series, J. Math. Anal. Appl. 450 (1), 490–503, 2017.
  • [13] W. Chu and X. Wang, The modified Abel lemma on summation by parts and terminating hypergeometric series identities, Integral Transforms Spec. Funct. 20 (2), 93–118, 2009.
  • [14] W. Chu, X. Wang, and D.Y. Zheng, Application of the residue theorem to bilateral hypergeometric series, Matematiche 62 (2), 127–146, 2007.
  • [15] A.C. Dixon, Summation of a certain series, Proc. London Math. Soc. 35 (1), 284–291, 1903.
  • [16] M.A. Dougall, On Vandermonde’s theorem and some more general expansion, Proc. Edin. Math. Soc. 25, 114–132, 2007.
  • [17] R.L. Graham, D.E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley Publ. Company, Reading, Massachusetts, 1989.
  • [18] M. Jackson, A note on the sum of a particular well–poised $_6H_6$ with argument −1, J. London Math. Soc. 27, 124–126, 1952.
  • [19] K. Knopp, Theory and Applications of Infinite Series, Hafner Publishing Company, New York, 1971.
  • [20] E.D. Rainville, Special Functions, New York, The Macmillan Company, 1960.
  • [21] H.M. Srivastava, Y. Vyas, and K. Fatawat, Extensions of the classical theorems for very well–poised hypergeometric functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 113 (367), 2019, https://doi.org/10.1007/s13398-017-0485-5.
  • [22] K.R. Stromberg, An Introduction to Classical Real Analysis, Wadsworth, INC. Belmont, California, 1981.
  • [23] C. Wang and X. Chen, A short proof for Gosper’s $_7F_6$-series conjecture, J. Math. Anal. Appl. 422 (2), 819–824, 2015.
  • [24] C.Wang, J. Dai, and I. Mezo, A nonterminating $_7F_6$-series evaluation, Integral Transforms Spec. Funct. 29 (9), 719–724, 2018.
  • [25] F.J.W. Whipple, On well–poised series, generalized hypergeometric series having parameters in pairs, each pair with the same sum, Proc. London Math. Soc. 24 (2), 247–263, 1926.

Nonterminating well–poised hypergeometric series

Year 2020, , 1611 - 1624, 06.10.2020
https://doi.org/10.15672/hujms.548103

Abstract

Two classes of nonterminating well--poised series are examined by means of the modified Abel lemma on summation by parts, that leads to several summation and transformation formulae.

*******************************************************************************************************************

*******************************************************************************************************************

*******************************************************************************************************************

*******************************************************************************************************************

References

  • [1] W.N. Bailey, Generalized Hypergeometric Series, Cambridge University Press, Cambridge, 1935.
  • [2] W.N. Bailey, Series of hypergeometric type which are infinite in both directions, Quart. J. Math. 7, 105–115, 1936.
  • [3] T.J.I’A. Bromwich, An Introduction to the Theory of Infinite Series (2nd ed), Macmillan, New York, 1959.
  • [4] X.J. Chen and W. Chu, Closed formulae for a class of terminating $_3F_2(4)$-series, Integral Transforms Spec. Funct. 28 (11), 825–837, 2017.
  • [5] X.J. Chen and W. Chu, Terminating $_3F_2(4)$-series extended with three integer parameters, J. Difference Equ. Appl. 24 (8), 1346–1367, 2018.
  • [6] W. Chu, Abel’s lemma on summation by parts and Ramanujan’s $_1\psi_1$-series Identity, Aequationes Math. 72 (1-2), 172–176, 2006.
  • [7] W. Chu, Abel’s method on summation by parts and hypergeometric series, J. Difference Equ. Appl. 12 (8), 783–798, 2006.
  • [8] W. Chu, Bailey’s very well–poised ${_6\psi_6}$-series identity, J. Combin. Theory Ser. 113 (6), 966–979, 2006.
  • [9] W. Chu, Abel’s lemma on summation by parts and basic hypergeometric series, Adv. Appl. Math. 39 (4), 490–514, 2007.
  • [10] W. Chu, Asymptotic method for Dougall’s bilateral hypergeometric sums, Bull. Sci. Math. 131 (5), 457–468, 2007.
  • [11] W. Chu, q-extensions of Dougall’s bilateral ${_2H_2}$-series, Ramanujan J. 25 (1), 121–139, 2011.
  • [12] W. Chu, Evaluation of nonterminating hypergeometric $_3F_2(\frac34)$-series, J. Math. Anal. Appl. 450 (1), 490–503, 2017.
  • [13] W. Chu and X. Wang, The modified Abel lemma on summation by parts and terminating hypergeometric series identities, Integral Transforms Spec. Funct. 20 (2), 93–118, 2009.
  • [14] W. Chu, X. Wang, and D.Y. Zheng, Application of the residue theorem to bilateral hypergeometric series, Matematiche 62 (2), 127–146, 2007.
  • [15] A.C. Dixon, Summation of a certain series, Proc. London Math. Soc. 35 (1), 284–291, 1903.
  • [16] M.A. Dougall, On Vandermonde’s theorem and some more general expansion, Proc. Edin. Math. Soc. 25, 114–132, 2007.
  • [17] R.L. Graham, D.E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley Publ. Company, Reading, Massachusetts, 1989.
  • [18] M. Jackson, A note on the sum of a particular well–poised $_6H_6$ with argument −1, J. London Math. Soc. 27, 124–126, 1952.
  • [19] K. Knopp, Theory and Applications of Infinite Series, Hafner Publishing Company, New York, 1971.
  • [20] E.D. Rainville, Special Functions, New York, The Macmillan Company, 1960.
  • [21] H.M. Srivastava, Y. Vyas, and K. Fatawat, Extensions of the classical theorems for very well–poised hypergeometric functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 113 (367), 2019, https://doi.org/10.1007/s13398-017-0485-5.
  • [22] K.R. Stromberg, An Introduction to Classical Real Analysis, Wadsworth, INC. Belmont, California, 1981.
  • [23] C. Wang and X. Chen, A short proof for Gosper’s $_7F_6$-series conjecture, J. Math. Anal. Appl. 422 (2), 819–824, 2015.
  • [24] C.Wang, J. Dai, and I. Mezo, A nonterminating $_7F_6$-series evaluation, Integral Transforms Spec. Funct. 29 (9), 719–724, 2018.
  • [25] F.J.W. Whipple, On well–poised series, generalized hypergeometric series having parameters in pairs, each pair with the same sum, Proc. London Math. Soc. 24 (2), 247–263, 1926.
There are 25 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Wenchang Chu 0000-0002-8425-212X

Publication Date October 6, 2020
Published in Issue Year 2020

Cite

APA Chu, W. (2020). Nonterminating well–poised hypergeometric series. Hacettepe Journal of Mathematics and Statistics, 49(5), 1611-1624. https://doi.org/10.15672/hujms.548103
AMA Chu W. Nonterminating well–poised hypergeometric series. Hacettepe Journal of Mathematics and Statistics. October 2020;49(5):1611-1624. doi:10.15672/hujms.548103
Chicago Chu, Wenchang. “Nonterminating well–poised Hypergeometric Series”. Hacettepe Journal of Mathematics and Statistics 49, no. 5 (October 2020): 1611-24. https://doi.org/10.15672/hujms.548103.
EndNote Chu W (October 1, 2020) Nonterminating well–poised hypergeometric series. Hacettepe Journal of Mathematics and Statistics 49 5 1611–1624.
IEEE W. Chu, “Nonterminating well–poised hypergeometric series”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 5, pp. 1611–1624, 2020, doi: 10.15672/hujms.548103.
ISNAD Chu, Wenchang. “Nonterminating well–poised Hypergeometric Series”. Hacettepe Journal of Mathematics and Statistics 49/5 (October 2020), 1611-1624. https://doi.org/10.15672/hujms.548103.
JAMA Chu W. Nonterminating well–poised hypergeometric series. Hacettepe Journal of Mathematics and Statistics. 2020;49:1611–1624.
MLA Chu, Wenchang. “Nonterminating well–poised Hypergeometric Series”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 5, 2020, pp. 1611-24, doi:10.15672/hujms.548103.
Vancouver Chu W. Nonterminating well–poised hypergeometric series. Hacettepe Journal of Mathematics and Statistics. 2020;49(5):1611-24.