Year 2019,
, 1729 - 1743, 08.12.2019
Yaser Rostami
Khosrow Maleknejad
References
- [1] H. Adibi and P. Assari, Chebyshev wavelet method for numerical solution of Fredholm
integral equation of the first kind, Math. Prob. Eng, 2010, Article ID 138408, 17 pp.,
2010.
- [2] K. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge
University Press 2, 1997.
- [3] C.K. Chui, L. Montefusco and L. Puccio, Wavelets, Theory algorithm and applications,
Academic press, 1994.
- [4] A. Cohen, Numerical Analysis of Wavelet Methods, New York, Academic Press, 2003.
- [5] P.K. Kythe and P. Puri, Computational Methods for Linear Integral Equations,
Springer Science, 2002.
- [6] K. Maleknejad, T. Lotfi and K. Mahdiani, Numerical solution of first kind Fredholm
integral equation with wavelets-Galerkin method (WGM) and wavelets precondition,
Appl. Math. Comput. 186, 794-800, 2007.
- [7] K. Maleknejad, T. Lotfi and Y. Rostami, Numerical Computational Method in Solving
Fredholm Integral Equations of the Second Kind by Using Coifman Wavelet, Appl.
Math. Comput. 186, 212-218, 2007.
- [8] K. Maleknejad, H. Mesgarani and T. Nikazad, Wavelet-Galerkin Solutions For Fredholm
Integral Equations of The Second Kind, Internat. J. Engng. Sci. 13, 75-80, 2002.
- [9] K. Maleknejad and S. Sohrabi,Numerical solution of Fredholm integral equation of the
first kind by using Legendre wavelets, Appl. Math. Comput. 186, 836-843, 2007.
- [10] M.T. Rashed, Numerical solutions of the integral equations of the first kind, Appl.
Math. Comput. 2-3 , 413-420, 2003.
- [11] P.K. Sahu and S. Saha Ray, Numerical solutions for the system of Fredholm integral
equations of second kind by a new approach involving semiorthogonal B-spline wavelet
collocation method. Appl. Math. Comput. 234, 368-379, 2014.
- [12] M. Shamsi and M. Razzaghi, Solution of Hallens integral equation using multiwavelets,
Comput. Phys. Comm. C 168, 187-197, 2015.
- [13] A.M. Wazwaz, The regularization method for Fredholm integral equations of the first
kind, Comput. Math. Appl. 61 (10), 2981-2986, 2011.
- [14] G.A. Zakeri and M. Navab, Sinc collocation approximation of non-smooth solution
of a nonlinear weakly singular Volterra integral equation, J. Comput. Phys. 229,
6548-6557, 2010.
Solving Fredholm integral equations of the first kind by using wavelet bases
Year 2019,
, 1729 - 1743, 08.12.2019
Yaser Rostami
Khosrow Maleknejad
Abstract
In this paper, we used a project technique for solving integral equation of the first kind by wavelet families via regularization approach and we proved the convergence for the numerical method and error consideration. Semi-orthogonal B-spline scaling functions and wavelets of degree 4 and their dual functions are presented to approximate the solutions to integral equations. Sparse matrix will product of semi-orthoganality and vanishing moment properties of B-spline wavelets.
References
- [1] H. Adibi and P. Assari, Chebyshev wavelet method for numerical solution of Fredholm
integral equation of the first kind, Math. Prob. Eng, 2010, Article ID 138408, 17 pp.,
2010.
- [2] K. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge
University Press 2, 1997.
- [3] C.K. Chui, L. Montefusco and L. Puccio, Wavelets, Theory algorithm and applications,
Academic press, 1994.
- [4] A. Cohen, Numerical Analysis of Wavelet Methods, New York, Academic Press, 2003.
- [5] P.K. Kythe and P. Puri, Computational Methods for Linear Integral Equations,
Springer Science, 2002.
- [6] K. Maleknejad, T. Lotfi and K. Mahdiani, Numerical solution of first kind Fredholm
integral equation with wavelets-Galerkin method (WGM) and wavelets precondition,
Appl. Math. Comput. 186, 794-800, 2007.
- [7] K. Maleknejad, T. Lotfi and Y. Rostami, Numerical Computational Method in Solving
Fredholm Integral Equations of the Second Kind by Using Coifman Wavelet, Appl.
Math. Comput. 186, 212-218, 2007.
- [8] K. Maleknejad, H. Mesgarani and T. Nikazad, Wavelet-Galerkin Solutions For Fredholm
Integral Equations of The Second Kind, Internat. J. Engng. Sci. 13, 75-80, 2002.
- [9] K. Maleknejad and S. Sohrabi,Numerical solution of Fredholm integral equation of the
first kind by using Legendre wavelets, Appl. Math. Comput. 186, 836-843, 2007.
- [10] M.T. Rashed, Numerical solutions of the integral equations of the first kind, Appl.
Math. Comput. 2-3 , 413-420, 2003.
- [11] P.K. Sahu and S. Saha Ray, Numerical solutions for the system of Fredholm integral
equations of second kind by a new approach involving semiorthogonal B-spline wavelet
collocation method. Appl. Math. Comput. 234, 368-379, 2014.
- [12] M. Shamsi and M. Razzaghi, Solution of Hallens integral equation using multiwavelets,
Comput. Phys. Comm. C 168, 187-197, 2015.
- [13] A.M. Wazwaz, The regularization method for Fredholm integral equations of the first
kind, Comput. Math. Appl. 61 (10), 2981-2986, 2011.
- [14] G.A. Zakeri and M. Navab, Sinc collocation approximation of non-smooth solution
of a nonlinear weakly singular Volterra integral equation, J. Comput. Phys. 229,
6548-6557, 2010.