Research Article
BibTex RIS Cite
Year 2019, , 1729 - 1743, 08.12.2019
https://doi.org/10.15672/hujms.553433

Abstract

References

  • [1] H. Adibi and P. Assari, Chebyshev wavelet method for numerical solution of Fredholm integral equation of the first kind, Math. Prob. Eng, 2010, Article ID 138408, 17 pp., 2010.
  • [2] K. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press 2, 1997.
  • [3] C.K. Chui, L. Montefusco and L. Puccio, Wavelets, Theory algorithm and applications, Academic press, 1994.
  • [4] A. Cohen, Numerical Analysis of Wavelet Methods, New York, Academic Press, 2003.
  • [5] P.K. Kythe and P. Puri, Computational Methods for Linear Integral Equations, Springer Science, 2002.
  • [6] K. Maleknejad, T. Lotfi and K. Mahdiani, Numerical solution of first kind Fredholm integral equation with wavelets-Galerkin method (WGM) and wavelets precondition, Appl. Math. Comput. 186, 794-800, 2007.
  • [7] K. Maleknejad, T. Lotfi and Y. Rostami, Numerical Computational Method in Solving Fredholm Integral Equations of the Second Kind by Using Coifman Wavelet, Appl. Math. Comput. 186, 212-218, 2007.
  • [8] K. Maleknejad, H. Mesgarani and T. Nikazad, Wavelet-Galerkin Solutions For Fredholm Integral Equations of The Second Kind, Internat. J. Engng. Sci. 13, 75-80, 2002.
  • [9] K. Maleknejad and S. Sohrabi,Numerical solution of Fredholm integral equation of the first kind by using Legendre wavelets, Appl. Math. Comput. 186, 836-843, 2007.
  • [10] M.T. Rashed, Numerical solutions of the integral equations of the first kind, Appl. Math. Comput. 2-3 , 413-420, 2003.
  • [11] P.K. Sahu and S. Saha Ray, Numerical solutions for the system of Fredholm integral equations of second kind by a new approach involving semiorthogonal B-spline wavelet collocation method. Appl. Math. Comput. 234, 368-379, 2014.
  • [12] M. Shamsi and M. Razzaghi, Solution of Hallens integral equation using multiwavelets, Comput. Phys. Comm. C 168, 187-197, 2015.
  • [13] A.M. Wazwaz, The regularization method for Fredholm integral equations of the first kind, Comput. Math. Appl. 61 (10), 2981-2986, 2011.
  • [14] G.A. Zakeri and M. Navab, Sinc collocation approximation of non-smooth solution of a nonlinear weakly singular Volterra integral equation, J. Comput. Phys. 229, 6548-6557, 2010.

Solving Fredholm integral equations of the first kind by using wavelet bases

Year 2019, , 1729 - 1743, 08.12.2019
https://doi.org/10.15672/hujms.553433

Abstract

In this paper, we used a project technique for solving integral equation of the first kind by wavelet families via regularization approach and we proved the convergence for the numerical method and error consideration. Semi-orthogonal B-spline scaling functions and wavelets of degree 4 and their dual functions are presented to approximate the solutions to integral equations. Sparse matrix will product of semi-orthoganality and vanishing moment properties of B-spline wavelets.

References

  • [1] H. Adibi and P. Assari, Chebyshev wavelet method for numerical solution of Fredholm integral equation of the first kind, Math. Prob. Eng, 2010, Article ID 138408, 17 pp., 2010.
  • [2] K. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press 2, 1997.
  • [3] C.K. Chui, L. Montefusco and L. Puccio, Wavelets, Theory algorithm and applications, Academic press, 1994.
  • [4] A. Cohen, Numerical Analysis of Wavelet Methods, New York, Academic Press, 2003.
  • [5] P.K. Kythe and P. Puri, Computational Methods for Linear Integral Equations, Springer Science, 2002.
  • [6] K. Maleknejad, T. Lotfi and K. Mahdiani, Numerical solution of first kind Fredholm integral equation with wavelets-Galerkin method (WGM) and wavelets precondition, Appl. Math. Comput. 186, 794-800, 2007.
  • [7] K. Maleknejad, T. Lotfi and Y. Rostami, Numerical Computational Method in Solving Fredholm Integral Equations of the Second Kind by Using Coifman Wavelet, Appl. Math. Comput. 186, 212-218, 2007.
  • [8] K. Maleknejad, H. Mesgarani and T. Nikazad, Wavelet-Galerkin Solutions For Fredholm Integral Equations of The Second Kind, Internat. J. Engng. Sci. 13, 75-80, 2002.
  • [9] K. Maleknejad and S. Sohrabi,Numerical solution of Fredholm integral equation of the first kind by using Legendre wavelets, Appl. Math. Comput. 186, 836-843, 2007.
  • [10] M.T. Rashed, Numerical solutions of the integral equations of the first kind, Appl. Math. Comput. 2-3 , 413-420, 2003.
  • [11] P.K. Sahu and S. Saha Ray, Numerical solutions for the system of Fredholm integral equations of second kind by a new approach involving semiorthogonal B-spline wavelet collocation method. Appl. Math. Comput. 234, 368-379, 2014.
  • [12] M. Shamsi and M. Razzaghi, Solution of Hallens integral equation using multiwavelets, Comput. Phys. Comm. C 168, 187-197, 2015.
  • [13] A.M. Wazwaz, The regularization method for Fredholm integral equations of the first kind, Comput. Math. Appl. 61 (10), 2981-2986, 2011.
  • [14] G.A. Zakeri and M. Navab, Sinc collocation approximation of non-smooth solution of a nonlinear weakly singular Volterra integral equation, J. Comput. Phys. 229, 6548-6557, 2010.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Yaser Rostami This is me 0000-0002-4506-9672

Khosrow Maleknejad 0000-0003-1774-7525

Publication Date December 8, 2019
Published in Issue Year 2019

Cite

APA Rostami, Y., & Maleknejad, K. (2019). Solving Fredholm integral equations of the first kind by using wavelet bases. Hacettepe Journal of Mathematics and Statistics, 48(6), 1729-1743. https://doi.org/10.15672/hujms.553433
AMA Rostami Y, Maleknejad K. Solving Fredholm integral equations of the first kind by using wavelet bases. Hacettepe Journal of Mathematics and Statistics. December 2019;48(6):1729-1743. doi:10.15672/hujms.553433
Chicago Rostami, Yaser, and Khosrow Maleknejad. “Solving Fredholm Integral Equations of the First Kind by Using Wavelet Bases”. Hacettepe Journal of Mathematics and Statistics 48, no. 6 (December 2019): 1729-43. https://doi.org/10.15672/hujms.553433.
EndNote Rostami Y, Maleknejad K (December 1, 2019) Solving Fredholm integral equations of the first kind by using wavelet bases. Hacettepe Journal of Mathematics and Statistics 48 6 1729–1743.
IEEE Y. Rostami and K. Maleknejad, “Solving Fredholm integral equations of the first kind by using wavelet bases”, Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 6, pp. 1729–1743, 2019, doi: 10.15672/hujms.553433.
ISNAD Rostami, Yaser - Maleknejad, Khosrow. “Solving Fredholm Integral Equations of the First Kind by Using Wavelet Bases”. Hacettepe Journal of Mathematics and Statistics 48/6 (December 2019), 1729-1743. https://doi.org/10.15672/hujms.553433.
JAMA Rostami Y, Maleknejad K. Solving Fredholm integral equations of the first kind by using wavelet bases. Hacettepe Journal of Mathematics and Statistics. 2019;48:1729–1743.
MLA Rostami, Yaser and Khosrow Maleknejad. “Solving Fredholm Integral Equations of the First Kind by Using Wavelet Bases”. Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 6, 2019, pp. 1729-43, doi:10.15672/hujms.553433.
Vancouver Rostami Y, Maleknejad K. Solving Fredholm integral equations of the first kind by using wavelet bases. Hacettepe Journal of Mathematics and Statistics. 2019;48(6):1729-43.

Cited By