Research Article
BibTex RIS Cite

Year 2019, Volume: 48 Issue: 4, 951 - 958, 08.08.2019

Abstract

References

  • [1] G. Aghamollaei and A. Sheikh Hosseini, Some numerical radius inequalities with positive definite functions, Bull. Iranian Math. Soc. 41 (4), 889-900, 2015.
  • [2] T. Ando and K. Okubo, Induced norms of the Schur multiplication operator, Linear Algebra Appl. 147, 181-199, 1991.
  • [3] K.M.R. Audenaert, A characterization of anti-Lowner function, Proc. Amer. Math. Soc. 139 (12), 4217-4223, 2011.
  • [4] M. Bakherad and F. Kittaneh, Numerical Radius Inequalities Involving Commutators of G1 Operators, Complex Anal. Oper. Theory 13 (4), 1557-1567, 2019.
  • [5] M. Bakherad and M.S. Moslehian, Reverses and variations of Heinz inequality, Linear Multilinear Algebra 63 (10), 1972-1980, 2015.
  • [6] R. Bhatia and Ch. Davis, More matrix forms of the arithmetic-geometric mean inequality, SIAM J. Matrix Anal. Appl. 14 (1), 132-136, 1993.
  • [7] M. Erfanian Omidvar, M.S. Moslehian and A. Niknam, Some numerical radius inequalities for Hilbert space operators, Involve 2 (4), 469-476, 2009.
  • [8] J. Fujii, M. Fujii, Y. Seo and H. Zuo, Recent developments of matrix versions of the arithmetic-geometric mean inequality. Ann. Funct. Anal. 7 (1), 102-117, 2016.
  • [9] M. Fujii, J. Mićić Hot, J. Pečarić and Y. Seo, Recent developments of Mond-Pečarić method in operator inequalities. Inequalities for bounded selfadjoint operators on a Hilbert space. II., Monographs in Inequalities 4. Zagreb: Element, 2012.
  • [10] M. Fujii, Y. Seo and H. Zuo, Zhan’s inequality on A-G mean inequalities. Linear Algebra Appl. 470, 241-251, 2015.
  • [11] K.E. Gustafson and D.K.M. Rao, Numerical Range, The Field of Values of Linear Operators and Matrices, Springer, New York, 1997.
  • [12] O. Hirzallah, F. Kittaneh and Kh. Shebrawi, Numerical radius inequalities for certain 2 × 2 operator matrices, Integral Equations Operator Theory 71 (1), 129-147, 2011.
  • [13] M.K. Kwong, Some results on matrix monotone functions, Linear Algebra Appl. 118, 129-153, 1989.
  • [14] H. Najafi, Some results on Kwong functions and related inequalities, Linear Algebra Appl. 439 (9), 2634-2641, 2013.
  • [15] G. Ramesh, On the numerical radius of a quaternionic normal operator, 2 (1), 78-86, 2017.
  • [16] T. Yamazaki, On upper and lower bounds of the numerical radius and an equality condition, Studia Math. 178, 83-89, 2007.
  • [17] X. Zhan, Inequalities for unitarily invariant norms, SIAM J. Matrix Anal. Appl. 20 (2), 466-470, 1999.
  • [18] F. Zhang, Matrix Theory, Second edition, Springer, New York, 2011.

Some generalized numerical radius inequalities involving Kwong functions

Year 2019, Volume: 48 Issue: 4, 951 - 958, 08.08.2019

Abstract

We prove several numerical radius inequalities involving positive semidefinite matrices via the Hadamard product and Kwong functions. Among other inequalities, it is shown that if   $X$ is an arbitrary $n\times n$ matrix and $A,B$ are positive semidefinite, then
\[ \omega(H_{f,g}(A))\leq k\, \omega(AX+XA), \]
 which is equivalent to
\[\omega\big(H_{f,g}(A,B)\pm H_{f,g}(B,A)\big)\leq k'\,\left\{\omega((A+B)X+X(A+B))+\omega((A-B)X-X(A-B))\right\},\]
 where  $f$ and $g$ are two continuous functions on $(0,\infty)$ such that $h(t)={f(t)\over g(t)}$ is Kwong, $k=\max\left\{{f(\lambda)g(\lambda)\over \lambda}: {\lambda\in\sigma(A)}\right\}$ and $k'=\max\left\{{f(\lambda)g(\lambda)\over \lambda}: {\lambda\in\sigma(A)\cup\sigma(B)}\right\}$.

References

  • [1] G. Aghamollaei and A. Sheikh Hosseini, Some numerical radius inequalities with positive definite functions, Bull. Iranian Math. Soc. 41 (4), 889-900, 2015.
  • [2] T. Ando and K. Okubo, Induced norms of the Schur multiplication operator, Linear Algebra Appl. 147, 181-199, 1991.
  • [3] K.M.R. Audenaert, A characterization of anti-Lowner function, Proc. Amer. Math. Soc. 139 (12), 4217-4223, 2011.
  • [4] M. Bakherad and F. Kittaneh, Numerical Radius Inequalities Involving Commutators of G1 Operators, Complex Anal. Oper. Theory 13 (4), 1557-1567, 2019.
  • [5] M. Bakherad and M.S. Moslehian, Reverses and variations of Heinz inequality, Linear Multilinear Algebra 63 (10), 1972-1980, 2015.
  • [6] R. Bhatia and Ch. Davis, More matrix forms of the arithmetic-geometric mean inequality, SIAM J. Matrix Anal. Appl. 14 (1), 132-136, 1993.
  • [7] M. Erfanian Omidvar, M.S. Moslehian and A. Niknam, Some numerical radius inequalities for Hilbert space operators, Involve 2 (4), 469-476, 2009.
  • [8] J. Fujii, M. Fujii, Y. Seo and H. Zuo, Recent developments of matrix versions of the arithmetic-geometric mean inequality. Ann. Funct. Anal. 7 (1), 102-117, 2016.
  • [9] M. Fujii, J. Mićić Hot, J. Pečarić and Y. Seo, Recent developments of Mond-Pečarić method in operator inequalities. Inequalities for bounded selfadjoint operators on a Hilbert space. II., Monographs in Inequalities 4. Zagreb: Element, 2012.
  • [10] M. Fujii, Y. Seo and H. Zuo, Zhan’s inequality on A-G mean inequalities. Linear Algebra Appl. 470, 241-251, 2015.
  • [11] K.E. Gustafson and D.K.M. Rao, Numerical Range, The Field of Values of Linear Operators and Matrices, Springer, New York, 1997.
  • [12] O. Hirzallah, F. Kittaneh and Kh. Shebrawi, Numerical radius inequalities for certain 2 × 2 operator matrices, Integral Equations Operator Theory 71 (1), 129-147, 2011.
  • [13] M.K. Kwong, Some results on matrix monotone functions, Linear Algebra Appl. 118, 129-153, 1989.
  • [14] H. Najafi, Some results on Kwong functions and related inequalities, Linear Algebra Appl. 439 (9), 2634-2641, 2013.
  • [15] G. Ramesh, On the numerical radius of a quaternionic normal operator, 2 (1), 78-86, 2017.
  • [16] T. Yamazaki, On upper and lower bounds of the numerical radius and an equality condition, Studia Math. 178, 83-89, 2007.
  • [17] X. Zhan, Inequalities for unitarily invariant norms, SIAM J. Matrix Anal. Appl. 20 (2), 466-470, 1999.
  • [18] F. Zhang, Matrix Theory, Second edition, Springer, New York, 2011.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Mojtaba Bakherad 0000-0003-0323-6310

Publication Date August 8, 2019
Published in Issue Year 2019 Volume: 48 Issue: 4

Cite

APA Bakherad, M. (2019). Some generalized numerical radius inequalities involving Kwong functions. Hacettepe Journal of Mathematics and Statistics, 48(4), 951-958. https://izlik.org/JA25KM48MM
AMA 1.Bakherad M. Some generalized numerical radius inequalities involving Kwong functions. Hacettepe Journal of Mathematics and Statistics. 2019;48(4):951-958. https://izlik.org/JA25KM48MM
Chicago Bakherad, Mojtaba. 2019. “Some Generalized Numerical Radius Inequalities Involving Kwong Functions”. Hacettepe Journal of Mathematics and Statistics 48 (4): 951-58. https://izlik.org/JA25KM48MM.
EndNote Bakherad M (August 1, 2019) Some generalized numerical radius inequalities involving Kwong functions. Hacettepe Journal of Mathematics and Statistics 48 4 951–958.
IEEE [1]M. Bakherad, “Some generalized numerical radius inequalities involving Kwong functions”, Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 4, pp. 951–958, Aug. 2019, [Online]. Available: https://izlik.org/JA25KM48MM
ISNAD Bakherad, Mojtaba. “Some Generalized Numerical Radius Inequalities Involving Kwong Functions”. Hacettepe Journal of Mathematics and Statistics 48/4 (August 1, 2019): 951-958. https://izlik.org/JA25KM48MM.
JAMA 1.Bakherad M. Some generalized numerical radius inequalities involving Kwong functions. Hacettepe Journal of Mathematics and Statistics. 2019;48:951–958.
MLA Bakherad, Mojtaba. “Some Generalized Numerical Radius Inequalities Involving Kwong Functions”. Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 4, Aug. 2019, pp. 951-8, https://izlik.org/JA25KM48MM.
Vancouver 1.Bakherad M. Some generalized numerical radius inequalities involving Kwong functions. Hacettepe Journal of Mathematics and Statistics [Internet]. 2019 Aug. 1;48(4):951-8. Available from: https://izlik.org/JA25KM48MM