Research Article
BibTex RIS Cite
Year 2021, , 41 - 45, 04.02.2021
https://doi.org/10.15672/hujms.622655

Abstract

References

  • [1] T. Andreescu and D. Andrica, Number Theory. Structures, examples, and problems, Birkhäuser Boston, Inc., Boston, MA, 2009.
  • [2] A.I. Borevich and I.R. Shafarevich, Number Theory. Pure and Applied Mathematics Vol. 20, Academic Press, New York-London, 1966.
  • [3] J. Buchmann and U. Vollmer, Binary Quadratic Forms. Springer, Berlin 2007.
  • [4] A.J. Diesl, Nil clean rings, J. Algebra 383, 197-211, 2013.
  • [5] W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229, 269-278, 1977.
  • [6] A. Steger, Diagonalibility of Idempotent Matrices. Pacific J. Math. 19 (3), 535-542, 1966.

The nil-clean $2\times 2$ integral units

Year 2021, , 41 - 45, 04.02.2021
https://doi.org/10.15672/hujms.622655

Abstract

We prove that all trace $1$, $2\times 2$ invertible matrices over $\mathbb{Z}$ are nil-clean and, up to similarity, that there are only two trace $1$, $2\times 2$ invertible matrices over $\mathbb{Z}$.

References

  • [1] T. Andreescu and D. Andrica, Number Theory. Structures, examples, and problems, Birkhäuser Boston, Inc., Boston, MA, 2009.
  • [2] A.I. Borevich and I.R. Shafarevich, Number Theory. Pure and Applied Mathematics Vol. 20, Academic Press, New York-London, 1966.
  • [3] J. Buchmann and U. Vollmer, Binary Quadratic Forms. Springer, Berlin 2007.
  • [4] A.J. Diesl, Nil clean rings, J. Algebra 383, 197-211, 2013.
  • [5] W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229, 269-278, 1977.
  • [6] A. Steger, Diagonalibility of Idempotent Matrices. Pacific J. Math. 19 (3), 535-542, 1966.
There are 6 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Grigore Calugareanu 0000-0002-3353-6958

Publication Date February 4, 2021
Published in Issue Year 2021

Cite

APA Calugareanu, G. (2021). The nil-clean $2\times 2$ integral units. Hacettepe Journal of Mathematics and Statistics, 50(1), 41-45. https://doi.org/10.15672/hujms.622655
AMA Calugareanu G. The nil-clean $2\times 2$ integral units. Hacettepe Journal of Mathematics and Statistics. February 2021;50(1):41-45. doi:10.15672/hujms.622655
Chicago Calugareanu, Grigore. “The Nil-Clean $2\times 2$ Integral Units”. Hacettepe Journal of Mathematics and Statistics 50, no. 1 (February 2021): 41-45. https://doi.org/10.15672/hujms.622655.
EndNote Calugareanu G (February 1, 2021) The nil-clean $2\times 2$ integral units. Hacettepe Journal of Mathematics and Statistics 50 1 41–45.
IEEE G. Calugareanu, “The nil-clean $2\times 2$ integral units”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 1, pp. 41–45, 2021, doi: 10.15672/hujms.622655.
ISNAD Calugareanu, Grigore. “The Nil-Clean $2\times 2$ Integral Units”. Hacettepe Journal of Mathematics and Statistics 50/1 (February 2021), 41-45. https://doi.org/10.15672/hujms.622655.
JAMA Calugareanu G. The nil-clean $2\times 2$ integral units. Hacettepe Journal of Mathematics and Statistics. 2021;50:41–45.
MLA Calugareanu, Grigore. “The Nil-Clean $2\times 2$ Integral Units”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 1, 2021, pp. 41-45, doi:10.15672/hujms.622655.
Vancouver Calugareanu G. The nil-clean $2\times 2$ integral units. Hacettepe Journal of Mathematics and Statistics. 2021;50(1):41-5.