Research Article
BibTex RIS Cite
Year 2021, , 1140 - 1154, 06.08.2021
https://doi.org/10.15672/hujms.645070

Abstract

References

  • [1] M.T.K. Abbassi and M. Sarih, On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds, Diff. Geom. Appl. 22, 19–47, 2005.
  • [2] S. Amari, Information geometry of the EM and em algorithms for neural networks, Neural Networks, 8 (9), 1379–1408, 1995.
  • [3] F. Asgari and H.R. Salimi Moghaddam, On the Riemannian geometry of tangent Lie groups, Rend. Circ. Mat. Palermo, II. Ser. 67 (2), 185–195, 2018.
  • [4] V. Balan, E. Peyghan and E. Sharahi, Statistical structures on the tangent bundle of a statistical manifold with Sasaki metric, Hacet. J. Math. Stat. 49 (1), 120–135, 2020.
  • [5] M. Belkin, P. Niyogi and V. Sindhwani, Manifold regularization: a geometric framework for learning from labeled and unlabeled examples, J. Mach. Learn. Res. 7, 2399– 2434, 2006.
  • [6] L. Bilen and A. Gezer, Some results on Riemannian g-natural metrics generated by classical lifts on the tangent bundle, Eurasian Math. J. 8 (4), 18–34, 2017.
  • [7] T. Fei and J. Zhang, Interaction of Codazzi couplings with (Para-)Kähler geometry, Result Math. 72 (4), 2037–2056, 2017.
  • [8] S. Gudmundsson and E. Kappos, On the geometry of the tangent bundles, Expo. Math. 20, 1–41, 2002.
  • [9] S. Ianus, Statistical manifolds and tangent bundles, Sci. Bull. Univ. Politechnica of Bucharest Ser. D, 56, 29–34, 1994.
  • [10] S.L. Lauritzen, Statistical manifolds, In: Differential Geometry in Statistical Inferences, IMS Lecture Notes Monogr. Ser. 10, Inst. Math. Statist. Hayward California, 96–163, 1987.
  • [11] H. Matsuzoe and J.I. Inoguchi, Statistical structures on tangent bundles, APPS. Appl.Sci. 5 (1), 55–57, 2003.
  • [12] K. Nomizu and T. Sasaki, Affine Differential Geometry: Geometry of Affine Immersions, vol. 111 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1994.
  • [13] L. Nourmohammadifar, E. Peyghan and S. Uddin, Geometry of almost Kenmotsu Hom-Lie algebras, Quaest. Math. DOI: 10.2989/16073606.2021.1886194.
  • [14] C.R. Rao, Information and accuracy attainable in the estimation of statistical parameters, Bull. Calcutta Math. Soc. 37, 81–91, 1945.
  • [15] A. Schwenk-Schellschmidt and U. Simon, Codazzi-equivalent affine connections, Result Math. 56, 211–229, 2009.
  • [16] K. Sun and S. Marchand-Maillet, An information geometry of statistical manifold learning, (Proceedings of the 31st International Conference on Machine Learning (ICML-14), 1–9, 2014.
  • [17] K. Yano, and S. Ishihara, Tangent and cotangent bundles, Marcel Dekker, Inc., New York 1973.

Statistical structures on tangent bundles and tangent Lie groups

Year 2021, , 1140 - 1154, 06.08.2021
https://doi.org/10.15672/hujms.645070

Abstract

Let $TM$ be a tangent bundle over a Riemannian manifold $M$ with a Riemannian metric $g$ and $TG$ be a tangent Lie group over a Lie group with a left-invariant metric $g$. The purpose of the paper is two folds. Firstly, we study statistical structures on the tangent bundle $TM$ equipped with two Riemannian $g$-natural metrics and lift connections. Secondly, we define a left-invariant complete lift connection on the tangent Lie group $TG$ equipped with metric $\tilde{g}$ introduced in [F. Asgari and H. R. Salimi Moghaddam, On the Riemannian geometry of tangent Lie groups, Rend. Circ. Mat. Palermo II. Series, 2018] and study statistical structures in this setting.

References

  • [1] M.T.K. Abbassi and M. Sarih, On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds, Diff. Geom. Appl. 22, 19–47, 2005.
  • [2] S. Amari, Information geometry of the EM and em algorithms for neural networks, Neural Networks, 8 (9), 1379–1408, 1995.
  • [3] F. Asgari and H.R. Salimi Moghaddam, On the Riemannian geometry of tangent Lie groups, Rend. Circ. Mat. Palermo, II. Ser. 67 (2), 185–195, 2018.
  • [4] V. Balan, E. Peyghan and E. Sharahi, Statistical structures on the tangent bundle of a statistical manifold with Sasaki metric, Hacet. J. Math. Stat. 49 (1), 120–135, 2020.
  • [5] M. Belkin, P. Niyogi and V. Sindhwani, Manifold regularization: a geometric framework for learning from labeled and unlabeled examples, J. Mach. Learn. Res. 7, 2399– 2434, 2006.
  • [6] L. Bilen and A. Gezer, Some results on Riemannian g-natural metrics generated by classical lifts on the tangent bundle, Eurasian Math. J. 8 (4), 18–34, 2017.
  • [7] T. Fei and J. Zhang, Interaction of Codazzi couplings with (Para-)Kähler geometry, Result Math. 72 (4), 2037–2056, 2017.
  • [8] S. Gudmundsson and E. Kappos, On the geometry of the tangent bundles, Expo. Math. 20, 1–41, 2002.
  • [9] S. Ianus, Statistical manifolds and tangent bundles, Sci. Bull. Univ. Politechnica of Bucharest Ser. D, 56, 29–34, 1994.
  • [10] S.L. Lauritzen, Statistical manifolds, In: Differential Geometry in Statistical Inferences, IMS Lecture Notes Monogr. Ser. 10, Inst. Math. Statist. Hayward California, 96–163, 1987.
  • [11] H. Matsuzoe and J.I. Inoguchi, Statistical structures on tangent bundles, APPS. Appl.Sci. 5 (1), 55–57, 2003.
  • [12] K. Nomizu and T. Sasaki, Affine Differential Geometry: Geometry of Affine Immersions, vol. 111 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1994.
  • [13] L. Nourmohammadifar, E. Peyghan and S. Uddin, Geometry of almost Kenmotsu Hom-Lie algebras, Quaest. Math. DOI: 10.2989/16073606.2021.1886194.
  • [14] C.R. Rao, Information and accuracy attainable in the estimation of statistical parameters, Bull. Calcutta Math. Soc. 37, 81–91, 1945.
  • [15] A. Schwenk-Schellschmidt and U. Simon, Codazzi-equivalent affine connections, Result Math. 56, 211–229, 2009.
  • [16] K. Sun and S. Marchand-Maillet, An information geometry of statistical manifold learning, (Proceedings of the 31st International Conference on Machine Learning (ICML-14), 1–9, 2014.
  • [17] K. Yano, and S. Ishihara, Tangent and cotangent bundles, Marcel Dekker, Inc., New York 1973.
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Esmaeil Peyghan 0000-0002-2713-6253

Davood Seifipour This is me 0000-0003-1622-3914

Aydın Gezer 0000-0001-7505-0385

Publication Date August 6, 2021
Published in Issue Year 2021

Cite

APA Peyghan, E., Seifipour, D., & Gezer, A. (2021). Statistical structures on tangent bundles and tangent Lie groups. Hacettepe Journal of Mathematics and Statistics, 50(4), 1140-1154. https://doi.org/10.15672/hujms.645070
AMA Peyghan E, Seifipour D, Gezer A. Statistical structures on tangent bundles and tangent Lie groups. Hacettepe Journal of Mathematics and Statistics. August 2021;50(4):1140-1154. doi:10.15672/hujms.645070
Chicago Peyghan, Esmaeil, Davood Seifipour, and Aydın Gezer. “Statistical Structures on Tangent Bundles and Tangent Lie Groups”. Hacettepe Journal of Mathematics and Statistics 50, no. 4 (August 2021): 1140-54. https://doi.org/10.15672/hujms.645070.
EndNote Peyghan E, Seifipour D, Gezer A (August 1, 2021) Statistical structures on tangent bundles and tangent Lie groups. Hacettepe Journal of Mathematics and Statistics 50 4 1140–1154.
IEEE E. Peyghan, D. Seifipour, and A. Gezer, “Statistical structures on tangent bundles and tangent Lie groups”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 4, pp. 1140–1154, 2021, doi: 10.15672/hujms.645070.
ISNAD Peyghan, Esmaeil et al. “Statistical Structures on Tangent Bundles and Tangent Lie Groups”. Hacettepe Journal of Mathematics and Statistics 50/4 (August 2021), 1140-1154. https://doi.org/10.15672/hujms.645070.
JAMA Peyghan E, Seifipour D, Gezer A. Statistical structures on tangent bundles and tangent Lie groups. Hacettepe Journal of Mathematics and Statistics. 2021;50:1140–1154.
MLA Peyghan, Esmaeil et al. “Statistical Structures on Tangent Bundles and Tangent Lie Groups”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 4, 2021, pp. 1140-54, doi:10.15672/hujms.645070.
Vancouver Peyghan E, Seifipour D, Gezer A. Statistical structures on tangent bundles and tangent Lie groups. Hacettepe Journal of Mathematics and Statistics. 2021;50(4):1140-54.