Year 2021,
, 1306 - 1324, 15.10.2021
Ali Şendur
,
Srinivasan Natesan
Gautam Sıngh
References
- [1] F. Brezzi, P. Houston, D. Marini and E. Süli, Modeling subgrid viscosity for advectiondiffusion
problems, Comput. Meth. Appl. Mech. Eng. 190, 1601–1610, 2000.
- [2] F. Brezzi, T.J.R. Hughes, L.D. Marini, A. Russo and E. Süli, A priori error analysis
of residual-free bubbles for advection-diffusion problems, SIAM J. Numer. Anal. 36
(6), 1933-1948, 1999.
- [3] F. Brezzi, D. Marini and A. Russo, Applications of pseudo residual-free bubbles to the
stabilization of convection-diffusion problems, Comput. Meth. Appl. Mech. Eng. 166,
51–63, 1998.
- [4] F. Brezzi and A. Russo, Choosing bubbles for advection-diffusion problems, Math.
Models Meth. Appl. Sci. 4, 571–587, 1994.
- [5] A.N. Brooks and T.J.R. Hughes, Streamline upwind/Petrov-Galerkin formulations for
convection-dominated flows with particular emphasis on the incompressible Navier-
Stokes equations, Comput. Meth. Appl. Mech. Eng. 32, 199–259, 1982.
- [6] A. Buffa, T.J.R. Hughes and G. Sangalli, Analysis of a Multiscale Discontinuous
Galerkin Method for Convection Diffusion Problems, SIAM J. Numer. Anal. 44, 1420-
1440, 2006.
- [7] A. Cangiani and E. Süli, Enhanced residual-free bubble method for convection-diffusion
problems, Inter. J. Numer. Methods Fluids 47, 1307-1313, 2005.
- [8] B. Cockburn, Discontinuous Galerkin methods for convection-dominated problems,
Springer Berlin Heidelberg, 1999.
- [9] L.P. Franca, S.L. Frey and T.J.R. Hughes, Stabilized finite element methods: I. Application
to the advective-diffusive model, Comput. Meth. Appl. Mech. Eng. 95, 253–276,
1992.
- [10] L.P. Franca and F.N. Hwang, Refining the submesh strategy in the two-level finite element
method: application to the advection diffusion equation, Int. J. Numer. Methods
Fluids 39, 161–187, 2002.
- [11] L.P. Franca, A.L. Madureira and F. Valentin, Towards multiscale functions: enriching
finite element spaces with local but not bubble-like functions, Comput. Meth. Appl.
Mech. Eng. 194, 3006–3021, 2005.
- [12] L.P. Franca and A. Nesliturk, On a two-level finite element method for the incompressible
Navier-Stokes equations, Int. J. Numer. Methods Fluids 52, 433–453, 2001.
- [13] L.P. Franca, A. Nesliturk and M. Stynes, On the stability of residual-free bubbles for
convection-diffusion problems and their approximation by a two-level finite element
method, Comput. Meth. Appl. Mech. Eng. 166, 35–49, 1998.
- [14] L.P. Franca, J.V.A. Ramalho and F. Valentin, Multiscale and residual-free bubble
functions for reaction-advection-diffusion problems, Int. J. Multiscale Com. 3, 297–
312, 2005.
- [15] L.P. Franca and L. Tobiska, Stability of the residual free bubble method for bilinear
finite elements on rectangular grids, IMA J. Numer. Anal. 22, 73–87, 2002.
- [16] E. C. Gartland, Graded-mesh difference schemes for singularly perturbed two-point
boundary-value problems, Math. Comp. 51, 631–657, 1988.
- [17] T.J.R. Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann
formulation, subgrid scale models, bubbles and the origin of stabilized methods, Comput.
Meth. Appl. Mech. Eng. 127, 387–401, 1995.
- [18] T.J.R. Hughes, G.R. Feijoo, L. Mazzei and J.B. Quincy, The variational multiscale
method -a paradigm for computational mechanics, Comput. Meth. Appl. Mech. Eng.
166 (1-2), 3–24, 1998.
- [19] R.B. Kellog and A. Tsan, Analysis of some difference approximations for a singular
perturbation problem without turning points, Math. Comp. 32, 1025–1039, 1978.
- [20] N. Kopteva and E. O’Riordan, Shishkin meshes in the numerical solution of singularly
perturbed differential equations, Int. J. Numer. Anal. Model. 7, 393–415, 2010.
- [21] T. Linss, The necessity of Shishkin-decompositions, Appl. Math. Lett. 14, 891–896,
2001.
- [22] J.J.H. Miller, E. O’Riordan and G.I. Shishkin, Fitted Numerical Methods For Singular
Perturbation Problems, Singapore, New Jersey, London, Hong Kong: World Scientific,
1996.
- [23] E. O’Riordan and M. Stynes, A globally uniformly convergent finite element method
for a singularly perturbed elliptic problem in two dimensions, Math. Comp. 57, 47–62,
1991.
- [24] H.G. Roos , M. Stynes and L. Tobiska, Robust Numerical Methods For Singularly
Perturbed Differential Equations, Verlag, Berlin: Springer, 2008.
- [25] A. Sendur and A. Nesliturk, Applications of the pseudo residual-free bubbles to the
stabilization of convection-diffusion-reaction problems, Calcolo 49, 1–19, 2012.
- [26] G.I. Shishkin, Grid approximation of singularly perturbed parabolic equations with
internal layers, Soviet J. Numer. Anal. Math. Appl. Modelling. 3, 393–407, 1988.
- [27] M. Stynes, Steady-state convection-diffusion problems, Acta Numer. 14, 445–508,
2005.
- [28] M. Stynes and E. O’Riordan, An analysis of a singularly perturbed two-point boundary
value problem using only finite element techniques, Math. Comp. 56, 663–675, 1991.
- [29] M. Stynes and E. O’Riordan, A uniformly convergent Galerkin method on a Shishkin
mesh for a convection-diffusion problem, J. Math. Anal. Appl. 214, 36–54, 1997.
- [30] G. Sun and M. Stynes, Finite element methods for singularly perturbed high order
elliptic two-point boundary-value problems. II: Convection-diffusion type problems,
IMA. J. of Numer. Anal. 15, 197–219, 1995.
Error estimates for a fully discrete $\varepsilon-$uniform finite element method on quasi uniform meshes
Year 2021,
, 1306 - 1324, 15.10.2021
Ali Şendur
,
Srinivasan Natesan
Gautam Sıngh
Abstract
In this article, we analyze a fully discrete $\varepsilon-$uniformly convergent finite element method for singularly perturbed convection-diffusion-reaction boundary-value problems, on piecewise-uniform meshes. Here, we choose $L-$splines as basis functions. We will concentrate on the convergence analysis of the finite element method which employ the discrete $L-$spline basis functions instead of their continuous counterparts. The $L-$splines are approximated on the piecewise-uniform Shishkin mesh inside each element. These approximations are used as basis functions in the frame of Galerkin FEM on a coarse piecewise-uniform mesh to discretize the domain. Further, we determine the amount of error introduced by the discrete $L-$spline basis functions in the overall numerical method, and explore the possibility of recovering the order of convergence that are consistent with the classical order of convergence for the numerical methods using the exact $L-$splines.
References
- [1] F. Brezzi, P. Houston, D. Marini and E. Süli, Modeling subgrid viscosity for advectiondiffusion
problems, Comput. Meth. Appl. Mech. Eng. 190, 1601–1610, 2000.
- [2] F. Brezzi, T.J.R. Hughes, L.D. Marini, A. Russo and E. Süli, A priori error analysis
of residual-free bubbles for advection-diffusion problems, SIAM J. Numer. Anal. 36
(6), 1933-1948, 1999.
- [3] F. Brezzi, D. Marini and A. Russo, Applications of pseudo residual-free bubbles to the
stabilization of convection-diffusion problems, Comput. Meth. Appl. Mech. Eng. 166,
51–63, 1998.
- [4] F. Brezzi and A. Russo, Choosing bubbles for advection-diffusion problems, Math.
Models Meth. Appl. Sci. 4, 571–587, 1994.
- [5] A.N. Brooks and T.J.R. Hughes, Streamline upwind/Petrov-Galerkin formulations for
convection-dominated flows with particular emphasis on the incompressible Navier-
Stokes equations, Comput. Meth. Appl. Mech. Eng. 32, 199–259, 1982.
- [6] A. Buffa, T.J.R. Hughes and G. Sangalli, Analysis of a Multiscale Discontinuous
Galerkin Method for Convection Diffusion Problems, SIAM J. Numer. Anal. 44, 1420-
1440, 2006.
- [7] A. Cangiani and E. Süli, Enhanced residual-free bubble method for convection-diffusion
problems, Inter. J. Numer. Methods Fluids 47, 1307-1313, 2005.
- [8] B. Cockburn, Discontinuous Galerkin methods for convection-dominated problems,
Springer Berlin Heidelberg, 1999.
- [9] L.P. Franca, S.L. Frey and T.J.R. Hughes, Stabilized finite element methods: I. Application
to the advective-diffusive model, Comput. Meth. Appl. Mech. Eng. 95, 253–276,
1992.
- [10] L.P. Franca and F.N. Hwang, Refining the submesh strategy in the two-level finite element
method: application to the advection diffusion equation, Int. J. Numer. Methods
Fluids 39, 161–187, 2002.
- [11] L.P. Franca, A.L. Madureira and F. Valentin, Towards multiscale functions: enriching
finite element spaces with local but not bubble-like functions, Comput. Meth. Appl.
Mech. Eng. 194, 3006–3021, 2005.
- [12] L.P. Franca and A. Nesliturk, On a two-level finite element method for the incompressible
Navier-Stokes equations, Int. J. Numer. Methods Fluids 52, 433–453, 2001.
- [13] L.P. Franca, A. Nesliturk and M. Stynes, On the stability of residual-free bubbles for
convection-diffusion problems and their approximation by a two-level finite element
method, Comput. Meth. Appl. Mech. Eng. 166, 35–49, 1998.
- [14] L.P. Franca, J.V.A. Ramalho and F. Valentin, Multiscale and residual-free bubble
functions for reaction-advection-diffusion problems, Int. J. Multiscale Com. 3, 297–
312, 2005.
- [15] L.P. Franca and L. Tobiska, Stability of the residual free bubble method for bilinear
finite elements on rectangular grids, IMA J. Numer. Anal. 22, 73–87, 2002.
- [16] E. C. Gartland, Graded-mesh difference schemes for singularly perturbed two-point
boundary-value problems, Math. Comp. 51, 631–657, 1988.
- [17] T.J.R. Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann
formulation, subgrid scale models, bubbles and the origin of stabilized methods, Comput.
Meth. Appl. Mech. Eng. 127, 387–401, 1995.
- [18] T.J.R. Hughes, G.R. Feijoo, L. Mazzei and J.B. Quincy, The variational multiscale
method -a paradigm for computational mechanics, Comput. Meth. Appl. Mech. Eng.
166 (1-2), 3–24, 1998.
- [19] R.B. Kellog and A. Tsan, Analysis of some difference approximations for a singular
perturbation problem without turning points, Math. Comp. 32, 1025–1039, 1978.
- [20] N. Kopteva and E. O’Riordan, Shishkin meshes in the numerical solution of singularly
perturbed differential equations, Int. J. Numer. Anal. Model. 7, 393–415, 2010.
- [21] T. Linss, The necessity of Shishkin-decompositions, Appl. Math. Lett. 14, 891–896,
2001.
- [22] J.J.H. Miller, E. O’Riordan and G.I. Shishkin, Fitted Numerical Methods For Singular
Perturbation Problems, Singapore, New Jersey, London, Hong Kong: World Scientific,
1996.
- [23] E. O’Riordan and M. Stynes, A globally uniformly convergent finite element method
for a singularly perturbed elliptic problem in two dimensions, Math. Comp. 57, 47–62,
1991.
- [24] H.G. Roos , M. Stynes and L. Tobiska, Robust Numerical Methods For Singularly
Perturbed Differential Equations, Verlag, Berlin: Springer, 2008.
- [25] A. Sendur and A. Nesliturk, Applications of the pseudo residual-free bubbles to the
stabilization of convection-diffusion-reaction problems, Calcolo 49, 1–19, 2012.
- [26] G.I. Shishkin, Grid approximation of singularly perturbed parabolic equations with
internal layers, Soviet J. Numer. Anal. Math. Appl. Modelling. 3, 393–407, 1988.
- [27] M. Stynes, Steady-state convection-diffusion problems, Acta Numer. 14, 445–508,
2005.
- [28] M. Stynes and E. O’Riordan, An analysis of a singularly perturbed two-point boundary
value problem using only finite element techniques, Math. Comp. 56, 663–675, 1991.
- [29] M. Stynes and E. O’Riordan, A uniformly convergent Galerkin method on a Shishkin
mesh for a convection-diffusion problem, J. Math. Anal. Appl. 214, 36–54, 1997.
- [30] G. Sun and M. Stynes, Finite element methods for singularly perturbed high order
elliptic two-point boundary-value problems. II: Convection-diffusion type problems,
IMA. J. of Numer. Anal. 15, 197–219, 1995.