Research Article
BibTex RIS Cite
Year 2021, , 1306 - 1324, 15.10.2021
https://doi.org/10.15672/hujms.691017

Abstract

References

  • [1] F. Brezzi, P. Houston, D. Marini and E. Süli, Modeling subgrid viscosity for advectiondiffusion problems, Comput. Meth. Appl. Mech. Eng. 190, 1601–1610, 2000.
  • [2] F. Brezzi, T.J.R. Hughes, L.D. Marini, A. Russo and E. Süli, A priori error analysis of residual-free bubbles for advection-diffusion problems, SIAM J. Numer. Anal. 36 (6), 1933-1948, 1999.
  • [3] F. Brezzi, D. Marini and A. Russo, Applications of pseudo residual-free bubbles to the stabilization of convection-diffusion problems, Comput. Meth. Appl. Mech. Eng. 166, 51–63, 1998.
  • [4] F. Brezzi and A. Russo, Choosing bubbles for advection-diffusion problems, Math. Models Meth. Appl. Sci. 4, 571–587, 1994.
  • [5] A.N. Brooks and T.J.R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection-dominated flows with particular emphasis on the incompressible Navier- Stokes equations, Comput. Meth. Appl. Mech. Eng. 32, 199–259, 1982.
  • [6] A. Buffa, T.J.R. Hughes and G. Sangalli, Analysis of a Multiscale Discontinuous Galerkin Method for Convection Diffusion Problems, SIAM J. Numer. Anal. 44, 1420- 1440, 2006.
  • [7] A. Cangiani and E. Süli, Enhanced residual-free bubble method for convection-diffusion problems, Inter. J. Numer. Methods Fluids 47, 1307-1313, 2005.
  • [8] B. Cockburn, Discontinuous Galerkin methods for convection-dominated problems, Springer Berlin Heidelberg, 1999.
  • [9] L.P. Franca, S.L. Frey and T.J.R. Hughes, Stabilized finite element methods: I. Application to the advective-diffusive model, Comput. Meth. Appl. Mech. Eng. 95, 253–276, 1992.
  • [10] L.P. Franca and F.N. Hwang, Refining the submesh strategy in the two-level finite element method: application to the advection diffusion equation, Int. J. Numer. Methods Fluids 39, 161–187, 2002.
  • [11] L.P. Franca, A.L. Madureira and F. Valentin, Towards multiscale functions: enriching finite element spaces with local but not bubble-like functions, Comput. Meth. Appl. Mech. Eng. 194, 3006–3021, 2005.
  • [12] L.P. Franca and A. Nesliturk, On a two-level finite element method for the incompressible Navier-Stokes equations, Int. J. Numer. Methods Fluids 52, 433–453, 2001.
  • [13] L.P. Franca, A. Nesliturk and M. Stynes, On the stability of residual-free bubbles for convection-diffusion problems and their approximation by a two-level finite element method, Comput. Meth. Appl. Mech. Eng. 166, 35–49, 1998.
  • [14] L.P. Franca, J.V.A. Ramalho and F. Valentin, Multiscale and residual-free bubble functions for reaction-advection-diffusion problems, Int. J. Multiscale Com. 3, 297– 312, 2005.
  • [15] L.P. Franca and L. Tobiska, Stability of the residual free bubble method for bilinear finite elements on rectangular grids, IMA J. Numer. Anal. 22, 73–87, 2002.
  • [16] E. C. Gartland, Graded-mesh difference schemes for singularly perturbed two-point boundary-value problems, Math. Comp. 51, 631–657, 1988.
  • [17] T.J.R. Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origin of stabilized methods, Comput. Meth. Appl. Mech. Eng. 127, 387–401, 1995.
  • [18] T.J.R. Hughes, G.R. Feijoo, L. Mazzei and J.B. Quincy, The variational multiscale method -a paradigm for computational mechanics, Comput. Meth. Appl. Mech. Eng. 166 (1-2), 3–24, 1998.
  • [19] R.B. Kellog and A. Tsan, Analysis of some difference approximations for a singular perturbation problem without turning points, Math. Comp. 32, 1025–1039, 1978.
  • [20] N. Kopteva and E. O’Riordan, Shishkin meshes in the numerical solution of singularly perturbed differential equations, Int. J. Numer. Anal. Model. 7, 393–415, 2010.
  • [21] T. Linss, The necessity of Shishkin-decompositions, Appl. Math. Lett. 14, 891–896, 2001.
  • [22] J.J.H. Miller, E. O’Riordan and G.I. Shishkin, Fitted Numerical Methods For Singular Perturbation Problems, Singapore, New Jersey, London, Hong Kong: World Scientific, 1996.
  • [23] E. O’Riordan and M. Stynes, A globally uniformly convergent finite element method for a singularly perturbed elliptic problem in two dimensions, Math. Comp. 57, 47–62, 1991.
  • [24] H.G. Roos , M. Stynes and L. Tobiska, Robust Numerical Methods For Singularly Perturbed Differential Equations, Verlag, Berlin: Springer, 2008.
  • [25] A. Sendur and A. Nesliturk, Applications of the pseudo residual-free bubbles to the stabilization of convection-diffusion-reaction problems, Calcolo 49, 1–19, 2012.
  • [26] G.I. Shishkin, Grid approximation of singularly perturbed parabolic equations with internal layers, Soviet J. Numer. Anal. Math. Appl. Modelling. 3, 393–407, 1988.
  • [27] M. Stynes, Steady-state convection-diffusion problems, Acta Numer. 14, 445–508, 2005.
  • [28] M. Stynes and E. O’Riordan, An analysis of a singularly perturbed two-point boundary value problem using only finite element techniques, Math. Comp. 56, 663–675, 1991.
  • [29] M. Stynes and E. O’Riordan, A uniformly convergent Galerkin method on a Shishkin mesh for a convection-diffusion problem, J. Math. Anal. Appl. 214, 36–54, 1997.
  • [30] G. Sun and M. Stynes, Finite element methods for singularly perturbed high order elliptic two-point boundary-value problems. II: Convection-diffusion type problems, IMA. J. of Numer. Anal. 15, 197–219, 1995.

Error estimates for a fully discrete $\varepsilon-$uniform finite element method on quasi uniform meshes

Year 2021, , 1306 - 1324, 15.10.2021
https://doi.org/10.15672/hujms.691017

Abstract

In this article, we analyze a fully discrete $\varepsilon-$uniformly convergent finite element method for singularly perturbed convection-diffusion-reaction boundary-value problems, on piecewise-uniform meshes. Here, we choose $L-$splines as basis functions. We will concentrate on the convergence analysis of the finite element method which employ the discrete $L-$spline basis functions instead of their continuous counterparts. The $L-$splines are approximated on the piecewise-uniform Shishkin mesh inside each element. These approximations are used as basis functions in the frame of Galerkin FEM on a coarse piecewise-uniform mesh to discretize the domain. Further, we determine the amount of error introduced by the discrete $L-$spline basis functions in the overall numerical method, and explore the possibility of recovering the order of convergence that are consistent with the classical order of convergence for the numerical methods using the exact $L-$splines.

References

  • [1] F. Brezzi, P. Houston, D. Marini and E. Süli, Modeling subgrid viscosity for advectiondiffusion problems, Comput. Meth. Appl. Mech. Eng. 190, 1601–1610, 2000.
  • [2] F. Brezzi, T.J.R. Hughes, L.D. Marini, A. Russo and E. Süli, A priori error analysis of residual-free bubbles for advection-diffusion problems, SIAM J. Numer. Anal. 36 (6), 1933-1948, 1999.
  • [3] F. Brezzi, D. Marini and A. Russo, Applications of pseudo residual-free bubbles to the stabilization of convection-diffusion problems, Comput. Meth. Appl. Mech. Eng. 166, 51–63, 1998.
  • [4] F. Brezzi and A. Russo, Choosing bubbles for advection-diffusion problems, Math. Models Meth. Appl. Sci. 4, 571–587, 1994.
  • [5] A.N. Brooks and T.J.R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection-dominated flows with particular emphasis on the incompressible Navier- Stokes equations, Comput. Meth. Appl. Mech. Eng. 32, 199–259, 1982.
  • [6] A. Buffa, T.J.R. Hughes and G. Sangalli, Analysis of a Multiscale Discontinuous Galerkin Method for Convection Diffusion Problems, SIAM J. Numer. Anal. 44, 1420- 1440, 2006.
  • [7] A. Cangiani and E. Süli, Enhanced residual-free bubble method for convection-diffusion problems, Inter. J. Numer. Methods Fluids 47, 1307-1313, 2005.
  • [8] B. Cockburn, Discontinuous Galerkin methods for convection-dominated problems, Springer Berlin Heidelberg, 1999.
  • [9] L.P. Franca, S.L. Frey and T.J.R. Hughes, Stabilized finite element methods: I. Application to the advective-diffusive model, Comput. Meth. Appl. Mech. Eng. 95, 253–276, 1992.
  • [10] L.P. Franca and F.N. Hwang, Refining the submesh strategy in the two-level finite element method: application to the advection diffusion equation, Int. J. Numer. Methods Fluids 39, 161–187, 2002.
  • [11] L.P. Franca, A.L. Madureira and F. Valentin, Towards multiscale functions: enriching finite element spaces with local but not bubble-like functions, Comput. Meth. Appl. Mech. Eng. 194, 3006–3021, 2005.
  • [12] L.P. Franca and A. Nesliturk, On a two-level finite element method for the incompressible Navier-Stokes equations, Int. J. Numer. Methods Fluids 52, 433–453, 2001.
  • [13] L.P. Franca, A. Nesliturk and M. Stynes, On the stability of residual-free bubbles for convection-diffusion problems and their approximation by a two-level finite element method, Comput. Meth. Appl. Mech. Eng. 166, 35–49, 1998.
  • [14] L.P. Franca, J.V.A. Ramalho and F. Valentin, Multiscale and residual-free bubble functions for reaction-advection-diffusion problems, Int. J. Multiscale Com. 3, 297– 312, 2005.
  • [15] L.P. Franca and L. Tobiska, Stability of the residual free bubble method for bilinear finite elements on rectangular grids, IMA J. Numer. Anal. 22, 73–87, 2002.
  • [16] E. C. Gartland, Graded-mesh difference schemes for singularly perturbed two-point boundary-value problems, Math. Comp. 51, 631–657, 1988.
  • [17] T.J.R. Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origin of stabilized methods, Comput. Meth. Appl. Mech. Eng. 127, 387–401, 1995.
  • [18] T.J.R. Hughes, G.R. Feijoo, L. Mazzei and J.B. Quincy, The variational multiscale method -a paradigm for computational mechanics, Comput. Meth. Appl. Mech. Eng. 166 (1-2), 3–24, 1998.
  • [19] R.B. Kellog and A. Tsan, Analysis of some difference approximations for a singular perturbation problem without turning points, Math. Comp. 32, 1025–1039, 1978.
  • [20] N. Kopteva and E. O’Riordan, Shishkin meshes in the numerical solution of singularly perturbed differential equations, Int. J. Numer. Anal. Model. 7, 393–415, 2010.
  • [21] T. Linss, The necessity of Shishkin-decompositions, Appl. Math. Lett. 14, 891–896, 2001.
  • [22] J.J.H. Miller, E. O’Riordan and G.I. Shishkin, Fitted Numerical Methods For Singular Perturbation Problems, Singapore, New Jersey, London, Hong Kong: World Scientific, 1996.
  • [23] E. O’Riordan and M. Stynes, A globally uniformly convergent finite element method for a singularly perturbed elliptic problem in two dimensions, Math. Comp. 57, 47–62, 1991.
  • [24] H.G. Roos , M. Stynes and L. Tobiska, Robust Numerical Methods For Singularly Perturbed Differential Equations, Verlag, Berlin: Springer, 2008.
  • [25] A. Sendur and A. Nesliturk, Applications of the pseudo residual-free bubbles to the stabilization of convection-diffusion-reaction problems, Calcolo 49, 1–19, 2012.
  • [26] G.I. Shishkin, Grid approximation of singularly perturbed parabolic equations with internal layers, Soviet J. Numer. Anal. Math. Appl. Modelling. 3, 393–407, 1988.
  • [27] M. Stynes, Steady-state convection-diffusion problems, Acta Numer. 14, 445–508, 2005.
  • [28] M. Stynes and E. O’Riordan, An analysis of a singularly perturbed two-point boundary value problem using only finite element techniques, Math. Comp. 56, 663–675, 1991.
  • [29] M. Stynes and E. O’Riordan, A uniformly convergent Galerkin method on a Shishkin mesh for a convection-diffusion problem, J. Math. Anal. Appl. 214, 36–54, 1997.
  • [30] G. Sun and M. Stynes, Finite element methods for singularly perturbed high order elliptic two-point boundary-value problems. II: Convection-diffusion type problems, IMA. J. of Numer. Anal. 15, 197–219, 1995.
There are 30 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Ali Şendur 0000-0001-8628-5497

Srinivasan Natesan This is me 0000-0001-7527-1989

Gautam Sıngh This is me 0000-0002-0570-2170

Publication Date October 15, 2021
Published in Issue Year 2021

Cite

APA Şendur, A., Natesan, S., & Sıngh, G. (2021). Error estimates for a fully discrete $\varepsilon-$uniform finite element method on quasi uniform meshes. Hacettepe Journal of Mathematics and Statistics, 50(5), 1306-1324. https://doi.org/10.15672/hujms.691017
AMA Şendur A, Natesan S, Sıngh G. Error estimates for a fully discrete $\varepsilon-$uniform finite element method on quasi uniform meshes. Hacettepe Journal of Mathematics and Statistics. October 2021;50(5):1306-1324. doi:10.15672/hujms.691017
Chicago Şendur, Ali, Srinivasan Natesan, and Gautam Sıngh. “Error Estimates for a Fully Discrete $\varepsilon-$uniform Finite Element Method on Quasi Uniform Meshes”. Hacettepe Journal of Mathematics and Statistics 50, no. 5 (October 2021): 1306-24. https://doi.org/10.15672/hujms.691017.
EndNote Şendur A, Natesan S, Sıngh G (October 1, 2021) Error estimates for a fully discrete $\varepsilon-$uniform finite element method on quasi uniform meshes. Hacettepe Journal of Mathematics and Statistics 50 5 1306–1324.
IEEE A. Şendur, S. Natesan, and G. Sıngh, “Error estimates for a fully discrete $\varepsilon-$uniform finite element method on quasi uniform meshes”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 5, pp. 1306–1324, 2021, doi: 10.15672/hujms.691017.
ISNAD Şendur, Ali et al. “Error Estimates for a Fully Discrete $\varepsilon-$uniform Finite Element Method on Quasi Uniform Meshes”. Hacettepe Journal of Mathematics and Statistics 50/5 (October 2021), 1306-1324. https://doi.org/10.15672/hujms.691017.
JAMA Şendur A, Natesan S, Sıngh G. Error estimates for a fully discrete $\varepsilon-$uniform finite element method on quasi uniform meshes. Hacettepe Journal of Mathematics and Statistics. 2021;50:1306–1324.
MLA Şendur, Ali et al. “Error Estimates for a Fully Discrete $\varepsilon-$uniform Finite Element Method on Quasi Uniform Meshes”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 5, 2021, pp. 1306-24, doi:10.15672/hujms.691017.
Vancouver Şendur A, Natesan S, Sıngh G. Error estimates for a fully discrete $\varepsilon-$uniform finite element method on quasi uniform meshes. Hacettepe Journal of Mathematics and Statistics. 2021;50(5):1306-24.