Research Article
BibTex RIS Cite
Year 2020, , 1676 - 1685, 06.10.2020
https://doi.org/10.15672/hujms.701870

Abstract

References

  • [1] O.M. Baksalary and G. Trenkler. Core inverse of matrices, Linear Multilinear Algebra, 58(6), 681–697, 2010.
  • [2] O.M. Baksalary and G. Trenkler, On a generalized core inverse, Appl. Math. Comput. 236, 450–457, 2014.
  • [3] M.P. Drazin, Pseudo-inverses in associative rings and semigroup, Amer. Math. Monthly, 65, 506–514, 1958.
  • [4] R.E. Hartwig, Block generalized inverses, Arch. Retional Mech. Anal. 61(3), 197–251, 1976.
  • [5] S.B. Malik and N. Thome, On a new generalized inverse for matrices of an arbitrary index, Appl. Math. Comput. 226, 575–580, 2014.
  • [6] D. Mosić and D.S. Djordjević, Moore-Penrose-invertible normal and Hermitian elements in rings, Linear Algebra Appl. 431, 732–745, 2009.
  • [7] P. Patrício and R. Puystjens, Drazin-Moore-Penrose invertiblity in rings, Linear Algebra Appl. 389, 159–173, 2004.
  • [8] D.S. Rakić, N.Č. Dinčić and D.S. Djordjević, Group, Moore-Penrose, core and dual core inverse in rings with involution, Linear Algebra Appl. 463, 115–133, 2014.
  • [9] H. Schwerdtfeger, Introduction to Linear Algebra and the Theory of Matrices, P. Noordhoff, Groningen, 1950.
  • [10] J. von Neumann, On regular rings, Proc. Nati. Acad. Sci. U.S.A. 22 (12), 707–713, 1936.
  • [11] H.X. Wang and X.J. Liu, A partial order on the set of complex matrices with index one, Linear Multilinear Algebra, 66 (1), 206–216, 2018.
  • [12] S.Z. Xu, J.L. Chen and J. Benítez, EP elements in rings with involution, Bull. Malays. Math. Sci. Soc. 42, 3409–3426, 2019.
  • [13] S.Z. Xu, J.L. Chen, J. Benítez and D.G. Wang, Generalized core inverse of matrices, Miskolc Math. Notes, 20 (1), 565–584, 2019.
  • [14] S.Z. Xu, J.L. Chen and X.X. Zhang, New characterizations for core and dual core inverses in rings with involution, Front. Math. China. 12 (1), 231–246, 2017.

The $(j,m)$-core inverse in rings with involution

Year 2020, , 1676 - 1685, 06.10.2020
https://doi.org/10.15672/hujms.701870

Abstract

Let $R$ be a unital ring with involution. The $(j,m)$-core inverse of a complex matrix was extended to an element in $R$. New necessary and sufficient conditions such that an element in $R$ to be $(j,m)$-core invertible are given. Moreover, several additive and product properties of two $(j,m)$-core invertible elements are investigated and a order related to the $(j,m)$-core inverse is introduced.

***********************************************************************************************************************************

References

  • [1] O.M. Baksalary and G. Trenkler. Core inverse of matrices, Linear Multilinear Algebra, 58(6), 681–697, 2010.
  • [2] O.M. Baksalary and G. Trenkler, On a generalized core inverse, Appl. Math. Comput. 236, 450–457, 2014.
  • [3] M.P. Drazin, Pseudo-inverses in associative rings and semigroup, Amer. Math. Monthly, 65, 506–514, 1958.
  • [4] R.E. Hartwig, Block generalized inverses, Arch. Retional Mech. Anal. 61(3), 197–251, 1976.
  • [5] S.B. Malik and N. Thome, On a new generalized inverse for matrices of an arbitrary index, Appl. Math. Comput. 226, 575–580, 2014.
  • [6] D. Mosić and D.S. Djordjević, Moore-Penrose-invertible normal and Hermitian elements in rings, Linear Algebra Appl. 431, 732–745, 2009.
  • [7] P. Patrício and R. Puystjens, Drazin-Moore-Penrose invertiblity in rings, Linear Algebra Appl. 389, 159–173, 2004.
  • [8] D.S. Rakić, N.Č. Dinčić and D.S. Djordjević, Group, Moore-Penrose, core and dual core inverse in rings with involution, Linear Algebra Appl. 463, 115–133, 2014.
  • [9] H. Schwerdtfeger, Introduction to Linear Algebra and the Theory of Matrices, P. Noordhoff, Groningen, 1950.
  • [10] J. von Neumann, On regular rings, Proc. Nati. Acad. Sci. U.S.A. 22 (12), 707–713, 1936.
  • [11] H.X. Wang and X.J. Liu, A partial order on the set of complex matrices with index one, Linear Multilinear Algebra, 66 (1), 206–216, 2018.
  • [12] S.Z. Xu, J.L. Chen and J. Benítez, EP elements in rings with involution, Bull. Malays. Math. Sci. Soc. 42, 3409–3426, 2019.
  • [13] S.Z. Xu, J.L. Chen, J. Benítez and D.G. Wang, Generalized core inverse of matrices, Miskolc Math. Notes, 20 (1), 565–584, 2019.
  • [14] S.Z. Xu, J.L. Chen and X.X. Zhang, New characterizations for core and dual core inverses in rings with involution, Front. Math. China. 12 (1), 231–246, 2017.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Sanzhang Xu This is me 0000-0002-9744-477X

Jianlong Chen This is me 0000-0002-6798-488X

Dijana Mosić This is me 0000-0002-3255-9322

Publication Date October 6, 2020
Published in Issue Year 2020

Cite

APA Xu, S., Chen, J., & Mosić, D. (2020). The $(j,m)$-core inverse in rings with involution. Hacettepe Journal of Mathematics and Statistics, 49(5), 1676-1685. https://doi.org/10.15672/hujms.701870
AMA Xu S, Chen J, Mosić D. The $(j,m)$-core inverse in rings with involution. Hacettepe Journal of Mathematics and Statistics. October 2020;49(5):1676-1685. doi:10.15672/hujms.701870
Chicago Xu, Sanzhang, Jianlong Chen, and Dijana Mosić. “The $(j,m)$-Core Inverse in Rings With Involution”. Hacettepe Journal of Mathematics and Statistics 49, no. 5 (October 2020): 1676-85. https://doi.org/10.15672/hujms.701870.
EndNote Xu S, Chen J, Mosić D (October 1, 2020) The $(j,m)$-core inverse in rings with involution. Hacettepe Journal of Mathematics and Statistics 49 5 1676–1685.
IEEE S. Xu, J. Chen, and D. Mosić, “The $(j,m)$-core inverse in rings with involution”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 5, pp. 1676–1685, 2020, doi: 10.15672/hujms.701870.
ISNAD Xu, Sanzhang et al. “The $(j,m)$-Core Inverse in Rings With Involution”. Hacettepe Journal of Mathematics and Statistics 49/5 (October 2020), 1676-1685. https://doi.org/10.15672/hujms.701870.
JAMA Xu S, Chen J, Mosić D. The $(j,m)$-core inverse in rings with involution. Hacettepe Journal of Mathematics and Statistics. 2020;49:1676–1685.
MLA Xu, Sanzhang et al. “The $(j,m)$-Core Inverse in Rings With Involution”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 5, 2020, pp. 1676-85, doi:10.15672/hujms.701870.
Vancouver Xu S, Chen J, Mosić D. The $(j,m)$-core inverse in rings with involution. Hacettepe Journal of Mathematics and Statistics. 2020;49(5):1676-85.