We characterize continuity and compactness of the Volterra integral operator $T_g$ with the non-constant analytic symbol $g$ between certain weighted Fréchet or (LB)-spaces of analytic functions on the open unit disc, which arise as projective (resp. inductive) limits of intersections (resp. unions) of Bergman spaces of order $1<p<\infty$ induced by the standard radial weight $(1-|z|^2)^\alpha$ for $0<\alpha<\infty$. Motivated from the earlier results obtained for weighted Bergman spaces of standard weight, we also establish several results concerning the spectrum of the Volterra operators acting on the weighted Bergman Fréchet space $A^p_{\alpha+}$, and acting on the weighted Bergman (LB)-space $A^p_{\alpha-}$.
This article was completed during the autor's stay at Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, funded by The Scientific and Technological Research Council of Turkey (TÜBİTAK) with grant number 1059B191800828. The author is deeply thankful to Prof. José Bonet, Prof. Enrique Jordá, and Prof. David Jornet for useful suggestions and kind hospitality.
References
[1] A. Albanese, J. Bonet and W.J. Ricker, The Cesàro operator in growth Banach spaces
of analytic functions, Integr. Equ. Oper. Theory 86, 97–112, 2016.
[2] A. Albanese, J. Bonet and W. Ricker, The Cesàro operator in the Fréchet spaces $\ell^{p+}$
and $L^{p-}$, Glasg. Math. J. 59 (2), 273–287, 2017.
[3] A. Albanese, J. Bonet and W. Ricker, The Cesàro operator on Korenblum type spaces
of analytic functions, Collect. Math. 69 (2), 263–281, 2018.
[4] A. Aleman and J.A. Cima, An integral operator on $H^p$ and Hardy’s inequality, J.
Anal. Math. 85, 157–176, 2001.
[5] A. Aleman and O. Constantin, Spectra of integration operators on weighted Bergman
spaces, J. Anal. Math. 109, 199–231, 2009.
[6] A. Aleman and J.A. Peláez, Spectra of integration operators and weighted square
functions, Indiana Univ. Math. J. 61, 1–19, 2012.
[7] A. Aleman and A. Persson, Resolvent estimates and decomposable extensions of generalized
Cesàro operators, J. Funct. Anal. 258, 67–98, 2010.
[8] A. Aleman and A.G. Siskakis, An integral operator on $H^p$, Complex Var. Theory
Appl. 28, 149–158, 1995.
[9] A. Aleman and A.G. Siskakis, Integration operators on Bergman spaces, Indiana Univ.
Math. J. 46, 337–356, 1997.
[10] M. Basallote, M.D. Contreras, C. Hernández-Mancera, M.J. Martín and P.J.
Paúl,Volterra operators and semigroups in weighted Banach spaces of analytic functions,
Collect. Math. 65, 233–249, 2014.
[11] J. Bonet, The spectrum of Volterra operators on weighted spaces of entire functions,
Quart. J. Math. 66, 799–807, 2015.
[12] J. Bonet, The spectrum of Volterra operators on Korenblum type spaces of analytic
functions, Integr. Equ. Oper. Theory 91, 46, 2019.
[13] Ž. Čučković and R. Zhao, Weighted composition operators between different weighted
Bergman spaces and different Hardy spaces, Ilinois J. Math. 51 (2), 479–498, 2007.
[14] P. Duren, Theory of $H^p$ Spaces, Academic Press, New York, 1970.
[15] H. Hedenmalm, B. Korenblum and K. Zhu, Theory of Bergman Spaces, Graduate
Texts in Math. 199, Springer, New York, 2000.
[16] H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981.
[17] E. Kızgut, The Cesàro operator on weighted Bergman Fréchet and (LB)-spaces of
analytic functions, Filomat, to appear.
[18] R. Korhonen and J. Rättyä, Intersections and unions of weighted Bergman spaces,
Comput. Methods Funct. Theory 5 (2), 459–469, 2005.
[19] B. Malman, Spectra of generalized Cesàro operators acting on growth spaces, Integr.
Equ. Oper. Theory 90, 26, 2018.
[20] R. Meise and D. Vogt, Introduction to Functional Analysis, Oxford Graduate Texts
in Mathematics, Clarendon Press, Oxford, 1997.
[21] C. Pommerenke, Schlichte Funktionen un analytische Funktionen von beschränkter
mittlerer Oszilation, Comment. Math. Helv. 52, 591–602, 1977.
[22] J. Rättyä, Integration operator acting on Hardy and weighted Bergman spaces, Bull.
Aust. Math. Soc. 75, 431–446, 2006.
[23] A. Siskakis, Volterra operators on spaces of analytic functions-a survey, in: Proceedings
of the First Advanced Course in Operator Theory and Complex Analysis, 51–68,
Univ. Sevilla Serc. Publ., Seville, 2006.
[24] K. Zhu, Operator Theory on Function Spaces, Mathematical surveys and monographs
138, American Mathematical Society, 2007.
[1] A. Albanese, J. Bonet and W.J. Ricker, The Cesàro operator in growth Banach spaces
of analytic functions, Integr. Equ. Oper. Theory 86, 97–112, 2016.
[2] A. Albanese, J. Bonet and W. Ricker, The Cesàro operator in the Fréchet spaces $\ell^{p+}$
and $L^{p-}$, Glasg. Math. J. 59 (2), 273–287, 2017.
[3] A. Albanese, J. Bonet and W. Ricker, The Cesàro operator on Korenblum type spaces
of analytic functions, Collect. Math. 69 (2), 263–281, 2018.
[4] A. Aleman and J.A. Cima, An integral operator on $H^p$ and Hardy’s inequality, J.
Anal. Math. 85, 157–176, 2001.
[5] A. Aleman and O. Constantin, Spectra of integration operators on weighted Bergman
spaces, J. Anal. Math. 109, 199–231, 2009.
[6] A. Aleman and J.A. Peláez, Spectra of integration operators and weighted square
functions, Indiana Univ. Math. J. 61, 1–19, 2012.
[7] A. Aleman and A. Persson, Resolvent estimates and decomposable extensions of generalized
Cesàro operators, J. Funct. Anal. 258, 67–98, 2010.
[8] A. Aleman and A.G. Siskakis, An integral operator on $H^p$, Complex Var. Theory
Appl. 28, 149–158, 1995.
[9] A. Aleman and A.G. Siskakis, Integration operators on Bergman spaces, Indiana Univ.
Math. J. 46, 337–356, 1997.
[10] M. Basallote, M.D. Contreras, C. Hernández-Mancera, M.J. Martín and P.J.
Paúl,Volterra operators and semigroups in weighted Banach spaces of analytic functions,
Collect. Math. 65, 233–249, 2014.
[11] J. Bonet, The spectrum of Volterra operators on weighted spaces of entire functions,
Quart. J. Math. 66, 799–807, 2015.
[12] J. Bonet, The spectrum of Volterra operators on Korenblum type spaces of analytic
functions, Integr. Equ. Oper. Theory 91, 46, 2019.
[13] Ž. Čučković and R. Zhao, Weighted composition operators between different weighted
Bergman spaces and different Hardy spaces, Ilinois J. Math. 51 (2), 479–498, 2007.
[14] P. Duren, Theory of $H^p$ Spaces, Academic Press, New York, 1970.
[15] H. Hedenmalm, B. Korenblum and K. Zhu, Theory of Bergman Spaces, Graduate
Texts in Math. 199, Springer, New York, 2000.
[16] H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981.
[17] E. Kızgut, The Cesàro operator on weighted Bergman Fréchet and (LB)-spaces of
analytic functions, Filomat, to appear.
[18] R. Korhonen and J. Rättyä, Intersections and unions of weighted Bergman spaces,
Comput. Methods Funct. Theory 5 (2), 459–469, 2005.
[19] B. Malman, Spectra of generalized Cesàro operators acting on growth spaces, Integr.
Equ. Oper. Theory 90, 26, 2018.
[20] R. Meise and D. Vogt, Introduction to Functional Analysis, Oxford Graduate Texts
in Mathematics, Clarendon Press, Oxford, 1997.
[21] C. Pommerenke, Schlichte Funktionen un analytische Funktionen von beschränkter
mittlerer Oszilation, Comment. Math. Helv. 52, 591–602, 1977.
[22] J. Rättyä, Integration operator acting on Hardy and weighted Bergman spaces, Bull.
Aust. Math. Soc. 75, 431–446, 2006.
[23] A. Siskakis, Volterra operators on spaces of analytic functions-a survey, in: Proceedings
of the First Advanced Course in Operator Theory and Complex Analysis, 51–68,
Univ. Sevilla Serc. Publ., Seville, 2006.
[24] K. Zhu, Operator Theory on Function Spaces, Mathematical surveys and monographs
138, American Mathematical Society, 2007.
Kızgut, E. (2021). Volterra operators between limits of Bergman-type weighted spaces of analytic functions. Hacettepe Journal of Mathematics and Statistics, 50(4), 949-962. https://doi.org/10.15672/hujms.777911
AMA
Kızgut E. Volterra operators between limits of Bergman-type weighted spaces of analytic functions. Hacettepe Journal of Mathematics and Statistics. August 2021;50(4):949-962. doi:10.15672/hujms.777911
Chicago
Kızgut, Ersin. “Volterra Operators Between Limits of Bergman-Type Weighted Spaces of Analytic Functions”. Hacettepe Journal of Mathematics and Statistics 50, no. 4 (August 2021): 949-62. https://doi.org/10.15672/hujms.777911.
EndNote
Kızgut E (August 1, 2021) Volterra operators between limits of Bergman-type weighted spaces of analytic functions. Hacettepe Journal of Mathematics and Statistics 50 4 949–962.
IEEE
E. Kızgut, “Volterra operators between limits of Bergman-type weighted spaces of analytic functions”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 4, pp. 949–962, 2021, doi: 10.15672/hujms.777911.
ISNAD
Kızgut, Ersin. “Volterra Operators Between Limits of Bergman-Type Weighted Spaces of Analytic Functions”. Hacettepe Journal of Mathematics and Statistics 50/4 (August 2021), 949-962. https://doi.org/10.15672/hujms.777911.
JAMA
Kızgut E. Volterra operators between limits of Bergman-type weighted spaces of analytic functions. Hacettepe Journal of Mathematics and Statistics. 2021;50:949–962.
MLA
Kızgut, Ersin. “Volterra Operators Between Limits of Bergman-Type Weighted Spaces of Analytic Functions”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 4, 2021, pp. 949-62, doi:10.15672/hujms.777911.
Vancouver
Kızgut E. Volterra operators between limits of Bergman-type weighted spaces of analytic functions. Hacettepe Journal of Mathematics and Statistics. 2021;50(4):949-62.