Research Article
BibTex RIS Cite
Year 2021, , 1838 - 1854, 14.12.2021
https://doi.org/10.15672/hujms.788296

Abstract

References

  • [1] T. Abe and A. Pewsey, Sine-skewed circular distributions, Statist. Papers 52 (3), 683-707, 2011.
  • [2] T. Abe and A. Pewsey, Symmetric circular models through duplication and cosine perturbation, Comput. Statist. Data Anal. 55 (12), 3271-3282, 2011.
  • [3] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, Dover Publications, 1965.
  • [4] D.E. Amos, Computation of modified Bessel functions and their ratios, Math. Comp. 28 (125), 239-251, 1974.
  • [5] A. Azzalini, A class of distributions which includes the normal ones, Scand. Actuar. J. 12 (2), 171-178, 1985.
  • [6] M.N. Çankaya, Y.M. Bulut, F.Z. Dogru and O. Arslan, A bimodal extension of the generalized gamma distribution, Rev. Colomb. Estad. 38 (2), 371-384, 2015.
  • [7] B.S. Everitt and T. Hothorn, HSAUR2: A Handbook of Statistical Analyses Using R, 2nd ed., R Package Version 1.1-6, 2013.
  • [8] N.I. Fisher, T. Lewis and B.J. Embleton, Statistical Analysis of Spherical Data, Cambridge University Press, 1987.
  • [9] R. Gatto and S.R. Jammalamadaka, The generalized von Mises distribution, Stat. Methodol. 4 (3), 341-353, 2007.
  • [10] K. Hornik and B. Grün, movmf: An R package for fitting mixtures of von Mises-Fisher distributions, J. Stat. Softw. 58 (10), 1-31, 2014.
  • [11] S. Kato and M. Jones, An extended family of circular distributions related to wrapped Cauchy distributions via brownian motion, Bernoulli 19 (1), 154-171, 2013.
  • [12] J. Keilson, D. Petrondas, U. Sumita and J. Wellner, Significance points for some tests of uniformity on the sphere, J. Stat. Comput. Simul. 17 (3), 195-218, 1983.
  • [13] J.T. Kent, The Fisher-Bingham distribution on the sphere, J. R. Stat. Soc. Ser. B. Stat. Methodol. 44 (1), 71-80, 1982.
  • [14] B. Kim, S. Huckemann, J. Schulz and S. Jung, Small-sphere distributions for directional data with application to medical imaging, Scand. J. Stat. 46 (4), 1047-1071, 2019.
  • [15] K.V. Mardia, and P.E. Jupp, Directional Statistics, John Wiley & Sons, 2000. [16] A. Pewsey, M. Neuhäuser and G.D. Ruxton, Circular Statistics in R, Oxford University Press, 2013.
  • [17] A. Tanabe, K. Fukumizu, S. Oba, T. Takenouchi and S. Ishii, Parameter estimation for von MisesFisher distributions, Comput. Statist. 22 (1), 145-157, 2007.
  • [18] G. Ulrich, Computer generation of distributions on the m-sphere, J. R. Stat. Soc. Ser. C. Appl. Stat. 33, 158-163, 1984.
  • [19] D. Umbach and S.R. Jammalamadaka, On introducing asymmetry into circular distributions, Pak. J. Stat. Oper. Res. 8 (3), 531-535, 2012.
  • [20] G.S. Watson, Distributions on the circle and sphere, J. Appl. Probab. 19, 265-280, 1982.
  • [21] A.T. Wood, A bimodal distribution for the sphere, J. R. Stat. Soc. Ser. C. Appl. Stat. 31 (1), 52-58, 1982.
  • [22] A.T. Wood, Simulation of the von Mises-Fisher distribution, Comm. Statist. Simulation Comput. 23 (1), 157-164, 1994.
  • [23] E. Yfantis and L. Borgman, An extension of the von Mises distribution, Comm. Statist. Theory Methods 11 (15), 1695-1706, 1982.

A new extension of von Mises-Fisher distribution

Year 2021, , 1838 - 1854, 14.12.2021
https://doi.org/10.15672/hujms.788296

Abstract

Spherical distributions, including the von Mises-Fisher density, have received a great attention in the literature because of their usefulness to model circular data lying on the unit sphere. However, there is a paucity of research on proposing spherical densities possing multimode tuned with a single parameter. To fill in this gap, we extend von Mises-Fisher distribution to construct a new density. Moreover, some of the important statistical properties of the proposed distribution including the estimation of parameters are highlighted. To evaluate the performance of the proposed distribution, some simulation studies and analyzing three real-life examples are presented.

References

  • [1] T. Abe and A. Pewsey, Sine-skewed circular distributions, Statist. Papers 52 (3), 683-707, 2011.
  • [2] T. Abe and A. Pewsey, Symmetric circular models through duplication and cosine perturbation, Comput. Statist. Data Anal. 55 (12), 3271-3282, 2011.
  • [3] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, Dover Publications, 1965.
  • [4] D.E. Amos, Computation of modified Bessel functions and their ratios, Math. Comp. 28 (125), 239-251, 1974.
  • [5] A. Azzalini, A class of distributions which includes the normal ones, Scand. Actuar. J. 12 (2), 171-178, 1985.
  • [6] M.N. Çankaya, Y.M. Bulut, F.Z. Dogru and O. Arslan, A bimodal extension of the generalized gamma distribution, Rev. Colomb. Estad. 38 (2), 371-384, 2015.
  • [7] B.S. Everitt and T. Hothorn, HSAUR2: A Handbook of Statistical Analyses Using R, 2nd ed., R Package Version 1.1-6, 2013.
  • [8] N.I. Fisher, T. Lewis and B.J. Embleton, Statistical Analysis of Spherical Data, Cambridge University Press, 1987.
  • [9] R. Gatto and S.R. Jammalamadaka, The generalized von Mises distribution, Stat. Methodol. 4 (3), 341-353, 2007.
  • [10] K. Hornik and B. Grün, movmf: An R package for fitting mixtures of von Mises-Fisher distributions, J. Stat. Softw. 58 (10), 1-31, 2014.
  • [11] S. Kato and M. Jones, An extended family of circular distributions related to wrapped Cauchy distributions via brownian motion, Bernoulli 19 (1), 154-171, 2013.
  • [12] J. Keilson, D. Petrondas, U. Sumita and J. Wellner, Significance points for some tests of uniformity on the sphere, J. Stat. Comput. Simul. 17 (3), 195-218, 1983.
  • [13] J.T. Kent, The Fisher-Bingham distribution on the sphere, J. R. Stat. Soc. Ser. B. Stat. Methodol. 44 (1), 71-80, 1982.
  • [14] B. Kim, S. Huckemann, J. Schulz and S. Jung, Small-sphere distributions for directional data with application to medical imaging, Scand. J. Stat. 46 (4), 1047-1071, 2019.
  • [15] K.V. Mardia, and P.E. Jupp, Directional Statistics, John Wiley & Sons, 2000. [16] A. Pewsey, M. Neuhäuser and G.D. Ruxton, Circular Statistics in R, Oxford University Press, 2013.
  • [17] A. Tanabe, K. Fukumizu, S. Oba, T. Takenouchi and S. Ishii, Parameter estimation for von MisesFisher distributions, Comput. Statist. 22 (1), 145-157, 2007.
  • [18] G. Ulrich, Computer generation of distributions on the m-sphere, J. R. Stat. Soc. Ser. C. Appl. Stat. 33, 158-163, 1984.
  • [19] D. Umbach and S.R. Jammalamadaka, On introducing asymmetry into circular distributions, Pak. J. Stat. Oper. Res. 8 (3), 531-535, 2012.
  • [20] G.S. Watson, Distributions on the circle and sphere, J. Appl. Probab. 19, 265-280, 1982.
  • [21] A.T. Wood, A bimodal distribution for the sphere, J. R. Stat. Soc. Ser. C. Appl. Stat. 31 (1), 52-58, 1982.
  • [22] A.T. Wood, Simulation of the von Mises-Fisher distribution, Comm. Statist. Simulation Comput. 23 (1), 157-164, 1994.
  • [23] E. Yfantis and L. Borgman, An extension of the von Mises distribution, Comm. Statist. Theory Methods 11 (15), 1695-1706, 1982.
There are 22 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Statistics
Authors

Meisam Moghimbeygi This is me 0000-0003-2720-7397

Mousa Golalizadeh 0000-0002-8481-599X

Publication Date December 14, 2021
Published in Issue Year 2021

Cite

APA Moghimbeygi, M., & Golalizadeh, M. (2021). A new extension of von Mises-Fisher distribution. Hacettepe Journal of Mathematics and Statistics, 50(6), 1838-1854. https://doi.org/10.15672/hujms.788296
AMA Moghimbeygi M, Golalizadeh M. A new extension of von Mises-Fisher distribution. Hacettepe Journal of Mathematics and Statistics. December 2021;50(6):1838-1854. doi:10.15672/hujms.788296
Chicago Moghimbeygi, Meisam, and Mousa Golalizadeh. “A New Extension of Von Mises-Fisher Distribution”. Hacettepe Journal of Mathematics and Statistics 50, no. 6 (December 2021): 1838-54. https://doi.org/10.15672/hujms.788296.
EndNote Moghimbeygi M, Golalizadeh M (December 1, 2021) A new extension of von Mises-Fisher distribution. Hacettepe Journal of Mathematics and Statistics 50 6 1838–1854.
IEEE M. Moghimbeygi and M. Golalizadeh, “A new extension of von Mises-Fisher distribution”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 6, pp. 1838–1854, 2021, doi: 10.15672/hujms.788296.
ISNAD Moghimbeygi, Meisam - Golalizadeh, Mousa. “A New Extension of Von Mises-Fisher Distribution”. Hacettepe Journal of Mathematics and Statistics 50/6 (December 2021), 1838-1854. https://doi.org/10.15672/hujms.788296.
JAMA Moghimbeygi M, Golalizadeh M. A new extension of von Mises-Fisher distribution. Hacettepe Journal of Mathematics and Statistics. 2021;50:1838–1854.
MLA Moghimbeygi, Meisam and Mousa Golalizadeh. “A New Extension of Von Mises-Fisher Distribution”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 6, 2021, pp. 1838-54, doi:10.15672/hujms.788296.
Vancouver Moghimbeygi M, Golalizadeh M. A new extension of von Mises-Fisher distribution. Hacettepe Journal of Mathematics and Statistics. 2021;50(6):1838-54.

Cited By

Von Mises–Fisher Elliptical Distribution
IEEE Transactions on Neural Networks and Learning Systems
https://doi.org/10.1109/TNNLS.2022.3160519