Linear methods of approximation in weighted Lebesgue spaces with variable exponent
Year 2021,
, 744 - 753, 07.06.2021
Ahmet Testici
,
Daniyal M. İsrafilzade
Abstract
Some estimations in below for the deviations conducted by the Zygmund means and by the Abel-Poisson sums in the weighted Lebesgue spaces with variable exponent are obtained. In the classical Lebesgue spaces these estimations were proved by M. F. Timan. The considered weight functions satisfy the well known Muckenhout condition. For the proofs of main results some estimations obtained in the classical weighted Lebesgue spaces and also an extrapolation theorem proved in the weighted variable exponent Lebesgue spaces are used. Main results are new even in the nonweighted variable exponent Lebesgue spaces.
Supporting Institution
TUBITAK grant 114F422: Approximation Problems in the Variable Exponent Lebesgue Spaces
References
- [1] R. Akgun, Trigonometric Approximation of Functions in Generalized Lebesgue Spaces
With Variable Exponent, Ukrainian Math. J. 63 (1), 3–23, 2011.
- [2] R. Akgun, Polynomial approximation of functions in weighted Lebesgue and Smirnov
spaces with nonstandard growth, Georgian Math. J. 18, 203–235, 2011.
- [3] B.T. Bilalov and Z.G. Guseynov, Basicity of a system of exponents with a piece-wise
linear phase in variable spaces, Mediterr. J. Math. 9 (3), 487–498, 2012.
- [4] D.V. Cruz-Uribe, L. Diening and P. Hästö, The maximal operator on weighted variable
Lebesgue spaces, Fract. Calc. Appl. Anal. 14 (3), 361–374, 2011.
- [5] D.V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces Foundation and Har-
monic Analysis, Birkhäsuser, 2013.
- [6] D.V. Cruz Uribe and D.L. Wang, Extrapolation and weighted norm inequalities in the
variable Lebesgue spaces, Trans. Amer. Math. Soc. 369 (2), 1205–1235, 2017.
- [7] L. Diening and M. Růžiˆcka, Calderon-Zygmund operators on generalized Lebesgue
spaces $L^{p\left( x\right) }$ and problems related to fluid dynamic, J. Reine Angew. Math. 563, 197–
220, 2003.
- [8] A. Guven, Trigonometric Approximation By Matrix Transforms in $L^{p\left( x\right) }$ Space, Anal.
Appl. 10 (1), 47–65, 2012.
- [9] A. Guven and D.M. Israfilov, Trigonometric Approximation in Generalized Lebesgue
Spaces $L^{p\left( x\right) }$, J. Math. Inequal. 4 (2), 285–299, 2010.
- [10] D.M. Israfilov and A. Testici, Approximation in Smirnov Classes with Variable Exponent, Complex Var. Elliptic Equ. 60(9), 1243–1253, 2015.
- [11] D.M. Israfilov and A. Testici, Approximation by Matrix Transforms in
Weighted Lebesgue Spaces with Variable Exponent, Results Math. 73 (8), 2018,
https://doi.org/10.1007/s00025-018-0762-4.
- [12] D.M. Israfilov, V. Kokilashvili and S.G. Samko, Approximation In Weighted Lebesgue
and Smirnov Spaces With Variable Exponents, Proceed. of A. Razmadze Math. Insti-
tute, 143, 25–35, 2007.
- [13] S.Z. Jafarov, Linear Methods for Summing Fourier Series and Approximation in
Weighted Lebesgue Spaces with Variable Exponents, Ukrainian Math. J. 66 (10), 1509–
1518, 2015.
- [14] S.Z. Jafarov, Approximation by trigonometric polynomials in subspace of variable ex-
ponent grand Lebesgue spaces, Global Journal of Mathematics, 8 (2), 836–843, 2016.
- [15] S.Z. Jafarov, Linear methods of summing Fourier series and approximation in
weighted Orlicz spaces, Turkish J. Math. 42 (6), 2916–2925, 2018.
- [16] A. Kamińska, Indices, convexity and concavity in Musileak-Orlicz spaces, Funct. Ap-
prox. Comment. Math. 26, 67–84, 1998.
- [17] D.S. Kurtz, Littlewood-Paley and multiplier theorems on weighted $L^{p}$ spaces, Trans.
Amer. Math. Soc. 259(1), 235–254, 1980.
- [18] T.I. Najafov and N.P. Nasibova, On the Noetherness of the Riemann problem in a
generalized weighted Hardy classes, Azerbaijan J. Math. 5 (2), 109–139, 2015.
- [19] W. Orlicz, Über konjugierte Exponentenfolgen, Studia Math. 3, 200–212, 1931.
- [20] M. Růžicka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture
Notes in Mathematics 1748, Springer-Verlag, Berlin, 2000.
- [21] I.I. Sharapudinov, Some questions in approximation theory for Lebesgue spaces with
variable exponent, Itogi Nauki. Yug Rossii. Mat. Monograf 5, Southern Mathematical
Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences and
Republic of North Ossetia-Alania, Vladikavkaz (Russian), 2012.
- [22] I.I. Sharapudinov, Approximation of functions in $L_{2\pi }^{p\left( x\right) }$ by trigonometric polynomials, Izvestiya RAN : Ser. Math. 77 (2), 197–224, 2013; English transl., Izvestiya :
Mathematics 77 (2), 407–434. 2013.
- [23] I.I. Sharapudinov, On Direct and Inverse Theorems of Approximation Theory In Vari-
able Lebesgue Space And Sobolev Spaces, Azerbaijan J. Math. 4 (1), 55–72, 2014.
- [24] A. Testici, Approximation by Nörlund and Riesz Means in Weighted Lebesgue Space
With Variable Exponent, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68 (2),
2014–2025, 2019.
- [25] A.F. Timan, Theory of Approximation of Functions of a Real Variable, Macmillan,
New York, 1963.
- [26] M.F. Timan, Best approximation of a function and linear methods of summing Fourier
series, Izv. Akad. Nauk SSSR Ser. Mat. 29 (3), 587–604, 1965.
- [27] S.S. Volosivest, Approximation of functions and their conjugates in variable Lebesgue
spaces, Math. Sb. 208(1), 48–64, 2017.
- [28] A. Zygmund, Trigonometric Series, Vol. I and II, Cambridge University Press, 1959.
Year 2021,
, 744 - 753, 07.06.2021
Ahmet Testici
,
Daniyal M. İsrafilzade
References
- [1] R. Akgun, Trigonometric Approximation of Functions in Generalized Lebesgue Spaces
With Variable Exponent, Ukrainian Math. J. 63 (1), 3–23, 2011.
- [2] R. Akgun, Polynomial approximation of functions in weighted Lebesgue and Smirnov
spaces with nonstandard growth, Georgian Math. J. 18, 203–235, 2011.
- [3] B.T. Bilalov and Z.G. Guseynov, Basicity of a system of exponents with a piece-wise
linear phase in variable spaces, Mediterr. J. Math. 9 (3), 487–498, 2012.
- [4] D.V. Cruz-Uribe, L. Diening and P. Hästö, The maximal operator on weighted variable
Lebesgue spaces, Fract. Calc. Appl. Anal. 14 (3), 361–374, 2011.
- [5] D.V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces Foundation and Har-
monic Analysis, Birkhäsuser, 2013.
- [6] D.V. Cruz Uribe and D.L. Wang, Extrapolation and weighted norm inequalities in the
variable Lebesgue spaces, Trans. Amer. Math. Soc. 369 (2), 1205–1235, 2017.
- [7] L. Diening and M. Růžiˆcka, Calderon-Zygmund operators on generalized Lebesgue
spaces $L^{p\left( x\right) }$ and problems related to fluid dynamic, J. Reine Angew. Math. 563, 197–
220, 2003.
- [8] A. Guven, Trigonometric Approximation By Matrix Transforms in $L^{p\left( x\right) }$ Space, Anal.
Appl. 10 (1), 47–65, 2012.
- [9] A. Guven and D.M. Israfilov, Trigonometric Approximation in Generalized Lebesgue
Spaces $L^{p\left( x\right) }$, J. Math. Inequal. 4 (2), 285–299, 2010.
- [10] D.M. Israfilov and A. Testici, Approximation in Smirnov Classes with Variable Exponent, Complex Var. Elliptic Equ. 60(9), 1243–1253, 2015.
- [11] D.M. Israfilov and A. Testici, Approximation by Matrix Transforms in
Weighted Lebesgue Spaces with Variable Exponent, Results Math. 73 (8), 2018,
https://doi.org/10.1007/s00025-018-0762-4.
- [12] D.M. Israfilov, V. Kokilashvili and S.G. Samko, Approximation In Weighted Lebesgue
and Smirnov Spaces With Variable Exponents, Proceed. of A. Razmadze Math. Insti-
tute, 143, 25–35, 2007.
- [13] S.Z. Jafarov, Linear Methods for Summing Fourier Series and Approximation in
Weighted Lebesgue Spaces with Variable Exponents, Ukrainian Math. J. 66 (10), 1509–
1518, 2015.
- [14] S.Z. Jafarov, Approximation by trigonometric polynomials in subspace of variable ex-
ponent grand Lebesgue spaces, Global Journal of Mathematics, 8 (2), 836–843, 2016.
- [15] S.Z. Jafarov, Linear methods of summing Fourier series and approximation in
weighted Orlicz spaces, Turkish J. Math. 42 (6), 2916–2925, 2018.
- [16] A. Kamińska, Indices, convexity and concavity in Musileak-Orlicz spaces, Funct. Ap-
prox. Comment. Math. 26, 67–84, 1998.
- [17] D.S. Kurtz, Littlewood-Paley and multiplier theorems on weighted $L^{p}$ spaces, Trans.
Amer. Math. Soc. 259(1), 235–254, 1980.
- [18] T.I. Najafov and N.P. Nasibova, On the Noetherness of the Riemann problem in a
generalized weighted Hardy classes, Azerbaijan J. Math. 5 (2), 109–139, 2015.
- [19] W. Orlicz, Über konjugierte Exponentenfolgen, Studia Math. 3, 200–212, 1931.
- [20] M. Růžicka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture
Notes in Mathematics 1748, Springer-Verlag, Berlin, 2000.
- [21] I.I. Sharapudinov, Some questions in approximation theory for Lebesgue spaces with
variable exponent, Itogi Nauki. Yug Rossii. Mat. Monograf 5, Southern Mathematical
Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences and
Republic of North Ossetia-Alania, Vladikavkaz (Russian), 2012.
- [22] I.I. Sharapudinov, Approximation of functions in $L_{2\pi }^{p\left( x\right) }$ by trigonometric polynomials, Izvestiya RAN : Ser. Math. 77 (2), 197–224, 2013; English transl., Izvestiya :
Mathematics 77 (2), 407–434. 2013.
- [23] I.I. Sharapudinov, On Direct and Inverse Theorems of Approximation Theory In Vari-
able Lebesgue Space And Sobolev Spaces, Azerbaijan J. Math. 4 (1), 55–72, 2014.
- [24] A. Testici, Approximation by Nörlund and Riesz Means in Weighted Lebesgue Space
With Variable Exponent, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68 (2),
2014–2025, 2019.
- [25] A.F. Timan, Theory of Approximation of Functions of a Real Variable, Macmillan,
New York, 1963.
- [26] M.F. Timan, Best approximation of a function and linear methods of summing Fourier
series, Izv. Akad. Nauk SSSR Ser. Mat. 29 (3), 587–604, 1965.
- [27] S.S. Volosivest, Approximation of functions and their conjugates in variable Lebesgue
spaces, Math. Sb. 208(1), 48–64, 2017.
- [28] A. Zygmund, Trigonometric Series, Vol. I and II, Cambridge University Press, 1959.