Year 2021,
Volume: 50 Issue: 4, 1079 - 1093, 06.08.2021
Rodrigo Domínguez-lópez
Oscar Alberto Garrido-jıménez
,
Hugo Alberto Rincon Mejia
,
Manuel Gerardo Zorrilla-noriega
References
-
[1] A. Alvarado García, H. Rincón-Mejía and J. Ríos Montes, On the lattices of natural
and conatural classes in R-Mod, Comm. Algebra, 29 (2), 541–556, 2001.
-
[2] A. Alvarado-García, C. Cejudo-Castilla, H. Rincón-Mejía and I.F. Vilchis-Montalvo,
Pseudocomplements and strong pseudocomplements in lattices of module classes, J.
Algebra Appl. 17 (1), 1850016, 2018.
-
[3] A. Alvarado-García, C. Cejudo-Castilla, H. Rincón-Mejía, I.F. Vilchis-Montalvo and
M. Zorrilla-Noriega, On boolean lattices of module classes, Algebra Colloq. 25 (2),
285–294, 2018.
-
[4] F.W. Anderson and K.R. Fuller, Rings and Categories of Modules, Second edition,
New York, Springer-Verlag, 1992.
-
[5] L. Bican, T. Kepka and P. Němec, Rings, Modules and Preradicals, New York, Marcel
Dekker, 1982.
-
[6] K. Chiba and H. Tominaga, On strongly regular rings, Proc. Japan Acad. 49 (6),
435–437, 1973.
-
[7] J.H. Cozzens, Homological properties of the ring of differential polynomials, Bull.
Amer. Math. Soc. 76 (1), 75–79, 1970.
-
[8] J. Dauns and Y. Zhou, Classes of Modules, Pure and Applied Mathematics, 281,
Chapman & Hall/CRC, Boca Raton FL., 2006.
-
[9] R. Fernández-Alonso, F. Raggi, J. Ríos, H. Rincón-Mejía and C. Signoret, The lattice
structure of preradicals II. Partitions, J. Algebra Appl. 1 (2), 201–214, 2002.
-
[10] J.S. Golan, Torsion Theories, in:Pitman Monographs and Surveys in Pure and Applied
Mathematics, Vol. 29, Longman Scientific and Technical, Harlow, John Wiley
and Sons, New York, 1986.
-
[11] M.T. Koşan and J. Žemlička, Mod-Retractable Rings, Comm. Algebra, 42 (3), 998–
1010, 2014.
-
[12] K. Ohtake, Commutative rings of which all radicals are left exact, Comm. Algebra, 8
(16), 1505–1512, 1980.
-
[13] H. Rincón-Mejía and M. Zorrilla-Noriega, On some relations between the lattices Rnat,
R-conat and R-tors and the rings they characterize, J. Algebra Appl. 12 (5),
2013.
-
[14] B. Stenström, Rings of Quotients, Berlin, Heidelberg, New York, Springer-Verlag,
1975.
-
[15] Y. Zhou, The lattice of natural classes of modules, Comm. Algebra, 24 (5), 1637–1648,
1996.
On retractability and its relationships with lattices associated to a ring
Year 2021,
Volume: 50 Issue: 4, 1079 - 1093, 06.08.2021
Rodrigo Domínguez-lópez
Oscar Alberto Garrido-jıménez
,
Hugo Alberto Rincon Mejia
,
Manuel Gerardo Zorrilla-noriega
Abstract
The purpose of this work is threefold. First, we explore some relationships between retractability and some lattices of classes of modules. Secondly, we weaken the hypothesis of a result of Ohtake characterizing rings over which all radicals are left exact. In the last section of this work, we introduce a binary relation between modules that produce a Galois connection between the lattice of natural classes and the lattice of conatural classes, and we obtain some results about it.
References
-
[1] A. Alvarado García, H. Rincón-Mejía and J. Ríos Montes, On the lattices of natural
and conatural classes in R-Mod, Comm. Algebra, 29 (2), 541–556, 2001.
-
[2] A. Alvarado-García, C. Cejudo-Castilla, H. Rincón-Mejía and I.F. Vilchis-Montalvo,
Pseudocomplements and strong pseudocomplements in lattices of module classes, J.
Algebra Appl. 17 (1), 1850016, 2018.
-
[3] A. Alvarado-García, C. Cejudo-Castilla, H. Rincón-Mejía, I.F. Vilchis-Montalvo and
M. Zorrilla-Noriega, On boolean lattices of module classes, Algebra Colloq. 25 (2),
285–294, 2018.
-
[4] F.W. Anderson and K.R. Fuller, Rings and Categories of Modules, Second edition,
New York, Springer-Verlag, 1992.
-
[5] L. Bican, T. Kepka and P. Němec, Rings, Modules and Preradicals, New York, Marcel
Dekker, 1982.
-
[6] K. Chiba and H. Tominaga, On strongly regular rings, Proc. Japan Acad. 49 (6),
435–437, 1973.
-
[7] J.H. Cozzens, Homological properties of the ring of differential polynomials, Bull.
Amer. Math. Soc. 76 (1), 75–79, 1970.
-
[8] J. Dauns and Y. Zhou, Classes of Modules, Pure and Applied Mathematics, 281,
Chapman & Hall/CRC, Boca Raton FL., 2006.
-
[9] R. Fernández-Alonso, F. Raggi, J. Ríos, H. Rincón-Mejía and C. Signoret, The lattice
structure of preradicals II. Partitions, J. Algebra Appl. 1 (2), 201–214, 2002.
-
[10] J.S. Golan, Torsion Theories, in:Pitman Monographs and Surveys in Pure and Applied
Mathematics, Vol. 29, Longman Scientific and Technical, Harlow, John Wiley
and Sons, New York, 1986.
-
[11] M.T. Koşan and J. Žemlička, Mod-Retractable Rings, Comm. Algebra, 42 (3), 998–
1010, 2014.
-
[12] K. Ohtake, Commutative rings of which all radicals are left exact, Comm. Algebra, 8
(16), 1505–1512, 1980.
-
[13] H. Rincón-Mejía and M. Zorrilla-Noriega, On some relations between the lattices Rnat,
R-conat and R-tors and the rings they characterize, J. Algebra Appl. 12 (5),
2013.
-
[14] B. Stenström, Rings of Quotients, Berlin, Heidelberg, New York, Springer-Verlag,
1975.
-
[15] Y. Zhou, The lattice of natural classes of modules, Comm. Algebra, 24 (5), 1637–1648,
1996.