Research Article
BibTex RIS Cite
Year 2021, , 1079 - 1093, 06.08.2021
https://doi.org/10.15672/hujms.799818

Abstract

References

  • [1] A. Alvarado García, H. Rincón-Mejía and J. Ríos Montes, On the lattices of natural and conatural classes in R-Mod, Comm. Algebra, 29 (2), 541–556, 2001.
  • [2] A. Alvarado-García, C. Cejudo-Castilla, H. Rincón-Mejía and I.F. Vilchis-Montalvo, Pseudocomplements and strong pseudocomplements in lattices of module classes, J. Algebra Appl. 17 (1), 1850016, 2018.
  • [3] A. Alvarado-García, C. Cejudo-Castilla, H. Rincón-Mejía, I.F. Vilchis-Montalvo and M. Zorrilla-Noriega, On boolean lattices of module classes, Algebra Colloq. 25 (2), 285–294, 2018.
  • [4] F.W. Anderson and K.R. Fuller, Rings and Categories of Modules, Second edition, New York, Springer-Verlag, 1992.
  • [5] L. Bican, T. Kepka and P. Němec, Rings, Modules and Preradicals, New York, Marcel Dekker, 1982.
  • [6] K. Chiba and H. Tominaga, On strongly regular rings, Proc. Japan Acad. 49 (6), 435–437, 1973.
  • [7] J.H. Cozzens, Homological properties of the ring of differential polynomials, Bull. Amer. Math. Soc. 76 (1), 75–79, 1970.
  • [8] J. Dauns and Y. Zhou, Classes of Modules, Pure and Applied Mathematics, 281, Chapman & Hall/CRC, Boca Raton FL., 2006.
  • [9] R. Fernández-Alonso, F. Raggi, J. Ríos, H. Rincón-Mejía and C. Signoret, The lattice structure of preradicals II. Partitions, J. Algebra Appl. 1 (2), 201–214, 2002.
  • [10] J.S. Golan, Torsion Theories, in:Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 29, Longman Scientific and Technical, Harlow, John Wiley and Sons, New York, 1986.
  • [11] M.T. Koşan and J. Žemlička, Mod-Retractable Rings, Comm. Algebra, 42 (3), 998– 1010, 2014.
  • [12] K. Ohtake, Commutative rings of which all radicals are left exact, Comm. Algebra, 8 (16), 1505–1512, 1980.
  • [13] H. Rincón-Mejía and M. Zorrilla-Noriega, On some relations between the lattices Rnat, R-conat and R-tors and the rings they characterize, J. Algebra Appl. 12 (5), 2013.
  • [14] B. Stenström, Rings of Quotients, Berlin, Heidelberg, New York, Springer-Verlag, 1975.
  • [15] Y. Zhou, The lattice of natural classes of modules, Comm. Algebra, 24 (5), 1637–1648, 1996.

On retractability and its relationships with lattices associated to a ring

Year 2021, , 1079 - 1093, 06.08.2021
https://doi.org/10.15672/hujms.799818

Abstract

The purpose of this work is threefold. First, we explore some relationships between retractability and some lattices of classes of modules. Secondly, we weaken the hypothesis of a result of Ohtake characterizing rings over which all radicals are left exact. In the last section of this work, we introduce a binary relation between modules that produce a Galois connection between the lattice of natural classes and the lattice of conatural classes, and we obtain some results about it.

References

  • [1] A. Alvarado García, H. Rincón-Mejía and J. Ríos Montes, On the lattices of natural and conatural classes in R-Mod, Comm. Algebra, 29 (2), 541–556, 2001.
  • [2] A. Alvarado-García, C. Cejudo-Castilla, H. Rincón-Mejía and I.F. Vilchis-Montalvo, Pseudocomplements and strong pseudocomplements in lattices of module classes, J. Algebra Appl. 17 (1), 1850016, 2018.
  • [3] A. Alvarado-García, C. Cejudo-Castilla, H. Rincón-Mejía, I.F. Vilchis-Montalvo and M. Zorrilla-Noriega, On boolean lattices of module classes, Algebra Colloq. 25 (2), 285–294, 2018.
  • [4] F.W. Anderson and K.R. Fuller, Rings and Categories of Modules, Second edition, New York, Springer-Verlag, 1992.
  • [5] L. Bican, T. Kepka and P. Němec, Rings, Modules and Preradicals, New York, Marcel Dekker, 1982.
  • [6] K. Chiba and H. Tominaga, On strongly regular rings, Proc. Japan Acad. 49 (6), 435–437, 1973.
  • [7] J.H. Cozzens, Homological properties of the ring of differential polynomials, Bull. Amer. Math. Soc. 76 (1), 75–79, 1970.
  • [8] J. Dauns and Y. Zhou, Classes of Modules, Pure and Applied Mathematics, 281, Chapman & Hall/CRC, Boca Raton FL., 2006.
  • [9] R. Fernández-Alonso, F. Raggi, J. Ríos, H. Rincón-Mejía and C. Signoret, The lattice structure of preradicals II. Partitions, J. Algebra Appl. 1 (2), 201–214, 2002.
  • [10] J.S. Golan, Torsion Theories, in:Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 29, Longman Scientific and Technical, Harlow, John Wiley and Sons, New York, 1986.
  • [11] M.T. Koşan and J. Žemlička, Mod-Retractable Rings, Comm. Algebra, 42 (3), 998– 1010, 2014.
  • [12] K. Ohtake, Commutative rings of which all radicals are left exact, Comm. Algebra, 8 (16), 1505–1512, 1980.
  • [13] H. Rincón-Mejía and M. Zorrilla-Noriega, On some relations between the lattices Rnat, R-conat and R-tors and the rings they characterize, J. Algebra Appl. 12 (5), 2013.
  • [14] B. Stenström, Rings of Quotients, Berlin, Heidelberg, New York, Springer-Verlag, 1975.
  • [15] Y. Zhou, The lattice of natural classes of modules, Comm. Algebra, 24 (5), 1637–1648, 1996.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Rodrigo Domínguez-lópez This is me 0000-0003-3053-4786

Oscar Alberto Garrido-jıménez 0000-0001-6748-9857

Hugo Alberto Rincon Mejia 0000-0002-1527-8879

Manuel Gerardo Zorrilla-noriega This is me 0000-0001-7461-1806

Publication Date August 6, 2021
Published in Issue Year 2021

Cite

APA Domínguez-lópez, R., Garrido-jıménez, O. A., Rincon Mejia, H. A., Zorrilla-noriega, M. G. (2021). On retractability and its relationships with lattices associated to a ring. Hacettepe Journal of Mathematics and Statistics, 50(4), 1079-1093. https://doi.org/10.15672/hujms.799818
AMA Domínguez-lópez R, Garrido-jıménez OA, Rincon Mejia HA, Zorrilla-noriega MG. On retractability and its relationships with lattices associated to a ring. Hacettepe Journal of Mathematics and Statistics. August 2021;50(4):1079-1093. doi:10.15672/hujms.799818
Chicago Domínguez-lópez, Rodrigo, Oscar Alberto Garrido-jıménez, Hugo Alberto Rincon Mejia, and Manuel Gerardo Zorrilla-noriega. “On Retractability and Its Relationships With Lattices Associated to a Ring”. Hacettepe Journal of Mathematics and Statistics 50, no. 4 (August 2021): 1079-93. https://doi.org/10.15672/hujms.799818.
EndNote Domínguez-lópez R, Garrido-jıménez OA, Rincon Mejia HA, Zorrilla-noriega MG (August 1, 2021) On retractability and its relationships with lattices associated to a ring. Hacettepe Journal of Mathematics and Statistics 50 4 1079–1093.
IEEE R. Domínguez-lópez, O. A. Garrido-jıménez, H. A. Rincon Mejia, and M. G. Zorrilla-noriega, “On retractability and its relationships with lattices associated to a ring”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 4, pp. 1079–1093, 2021, doi: 10.15672/hujms.799818.
ISNAD Domínguez-lópez, Rodrigo et al. “On Retractability and Its Relationships With Lattices Associated to a Ring”. Hacettepe Journal of Mathematics and Statistics 50/4 (August 2021), 1079-1093. https://doi.org/10.15672/hujms.799818.
JAMA Domínguez-lópez R, Garrido-jıménez OA, Rincon Mejia HA, Zorrilla-noriega MG. On retractability and its relationships with lattices associated to a ring. Hacettepe Journal of Mathematics and Statistics. 2021;50:1079–1093.
MLA Domínguez-lópez, Rodrigo et al. “On Retractability and Its Relationships With Lattices Associated to a Ring”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 4, 2021, pp. 1079-93, doi:10.15672/hujms.799818.
Vancouver Domínguez-lópez R, Garrido-jıménez OA, Rincon Mejia HA, Zorrilla-noriega MG. On retractability and its relationships with lattices associated to a ring. Hacettepe Journal of Mathematics and Statistics. 2021;50(4):1079-93.