Year 2021,
, 1334 - 1346, 15.10.2021
Rovshan Bandaliyev
,
Kamala Safarova
Project Number
Grant № EIF-BGM-4-RFTF-1/2017-21/01/1-M-08
References
- [1] D.R. Aliyeva, On the boundedness of Hardy type integral operators in weighted
Lebesgue space, Caspian J. Appl. Math., Ecol. Econ. 6 (1), 35-41, 2018.
- [2] K.F. Andersen, Boundedness of Hausdorff operators on $L_p\left(\mathbb{R}^n\right),$ $H^1\left(\mathbb{R}^n\right),$ and $BMO\left(\mathbb{R}^n\right)$, Acta Sci. Math. (Szeged) 69 (1-2), 409-418, 2003.
- [3] R.A. Bandaliev, On one inequalities for convolution type operator, Hacet. J. Math.
Stat. 42 (3), 199-210, 2013.
- [4] R.A. Bandaliyev and P. Górka, Hausdorff operator in Lebesgue spaces, Math. Inequal.
Appl. 22 (2), 657-676, 2019.
- [5] R.A. Bandaliev and K.K. Omarova, Two-weight norm inequalities for certain singular
integrals, Taiwanese J. Math. 16 (2), 713-732, 2012.
- [6] R.A. Bandaliyev and K.H. Safarova, On boundedness of multidimensional Hausdorff
operator in weighted Lebesgue spaces, Tbilisi Math. J. 13 (1), 39-45, 2020.
- [7] G. Brown and F. Mòricz, The Hausdorff operator and the quasi Hausdorff operators
on the space $L^p,$ $1< p < \infty$, Math. Inequal. Appl. 3 (1), 105-115, 2000.
- [8] G. Brown and F. Mòricz, Multivariate Hausdorff operators on the spaces $L^p\left(\mathbb{R}^n\right)$, J.
Math. Anal. Appl. 271 (2), 443-454, 2002.
- [9] J. Chen, D. Fan and J. Li, Hausdorff operators on function spaces, Chin. Ann. Math.
Ser. B, 33 (4), 537-556, 2013.
- [10] J. Chen and X. Wu, Best constant for Hausdorff operators on n-dimensional product
spaces, Sci. China Math. 57 (3), 569-578, 2014.
- [11] D.E. Edmunds, V. Kokilashvili and A. Meskhi, Bounded and Compact Integral Operators,
Kluwer Academic Publishers, 2002.
- [12] G. Gao, X. Wu and W. Guo, Some results for Hausdorff operators, Math. Inequal.
Appl. 18 (1), 155-168, 2015.
- [13] A. Gogatishvili and V.D. Stepanov, Reduction theorems for weighted integral inequalities
on the cone of monotone functions, Russian Math. Surveys 68 (4), 597-664,
2013.
- [14] V.S. Guliyev, Two-weighted inequalities for integral operators in $L_p$-spaces and their
applications, Proc. Steklov Math. Inst. 204 (3), 97-116, 1993.
- [15] A. Hussain and A. Ajaib, Some weighted inequalities for Hausdorff operators and
commutators, J. Inequal. Appl. 2018, Article No. 6, 2018.
- [16] A. Hussain and G. Gao, Multidimensional Hausdorff operators and commutators on
Herz-type spaces, J. Inequal. Appl. 2013, Article No. 594, 2013.
- [17] A. Kufner, L. Maligranda and L.E. Persson, The Hardy inequality: About its history
and some related results, Research report, Department of Mathematics, Luleå
University of Technology, Sweden, 2005.
- [18] S.N Lal and S. Ram, On the absolute Hausdorff summability of a Fourier series,
Pacific J. Math. 42 (2), 439-451, 1972.
- [19] E. Liflyand, Hardy type inequalities in the category of Hausdorff operators, Modern
Meth. Oper. Theory Harmonic Anal. OTHA 2018. Springer Proc. Math. & Stat., 291,
81-91, 2019.
- [20] E. Liflyand and A. Miyachi, Boundedness of the Hausdorff operators in $H^p$ spaces, $0 < p < 1,$ Studia Math. 194 (3), 279-292, 2009.
- [21] E. Liflyand and A. Miyachi, Boundedness of multidimensional Hausdorff operators in
$H^p$ spaces, $0 < p < 1,$ Trans. Amer. Math. Soc. 371 (7), 4793-4814, 2019.
- [22] V.G. Maz’ya, Sobolev Spaces, Springer-Verlag, Berlin, 1985.
- [23] G. Talenti, Osservazione sopra una classe di disuguaglianze, Rend. Sem. Mat. Fiz.
Milano 39 (1), 171-185, 1969.
- [24] G. Tomaselli, A class of inequalities, Boll. Unione Mat. Ital. 2 (1), 622-631, 1969.
On two-weight inequalities for Hausdorff operators of special kind in Lebesgue spaces
Year 2021,
, 1334 - 1346, 15.10.2021
Rovshan Bandaliyev
,
Kamala Safarova
Abstract
In this paper, we establish necessary and sufficient conditions on monotone weight functions for the boundedness for Hausdorff operators of special kind in weighted Lebesgue spaces. In particular, we get similar results for important operators of harmonic analysis which are special cases of the Hausdorff operators. The weights are illustrated by examples at the end of the paper.
Supporting Institution
1st Azerbaijan-Russia Joint Grant Competition Grant N EIF-BGM-4-RFTF-1/2017-21/01/1-M08.
Project Number
Grant № EIF-BGM-4-RFTF-1/2017-21/01/1-M-08
References
- [1] D.R. Aliyeva, On the boundedness of Hardy type integral operators in weighted
Lebesgue space, Caspian J. Appl. Math., Ecol. Econ. 6 (1), 35-41, 2018.
- [2] K.F. Andersen, Boundedness of Hausdorff operators on $L_p\left(\mathbb{R}^n\right),$ $H^1\left(\mathbb{R}^n\right),$ and $BMO\left(\mathbb{R}^n\right)$, Acta Sci. Math. (Szeged) 69 (1-2), 409-418, 2003.
- [3] R.A. Bandaliev, On one inequalities for convolution type operator, Hacet. J. Math.
Stat. 42 (3), 199-210, 2013.
- [4] R.A. Bandaliyev and P. Górka, Hausdorff operator in Lebesgue spaces, Math. Inequal.
Appl. 22 (2), 657-676, 2019.
- [5] R.A. Bandaliev and K.K. Omarova, Two-weight norm inequalities for certain singular
integrals, Taiwanese J. Math. 16 (2), 713-732, 2012.
- [6] R.A. Bandaliyev and K.H. Safarova, On boundedness of multidimensional Hausdorff
operator in weighted Lebesgue spaces, Tbilisi Math. J. 13 (1), 39-45, 2020.
- [7] G. Brown and F. Mòricz, The Hausdorff operator and the quasi Hausdorff operators
on the space $L^p,$ $1< p < \infty$, Math. Inequal. Appl. 3 (1), 105-115, 2000.
- [8] G. Brown and F. Mòricz, Multivariate Hausdorff operators on the spaces $L^p\left(\mathbb{R}^n\right)$, J.
Math. Anal. Appl. 271 (2), 443-454, 2002.
- [9] J. Chen, D. Fan and J. Li, Hausdorff operators on function spaces, Chin. Ann. Math.
Ser. B, 33 (4), 537-556, 2013.
- [10] J. Chen and X. Wu, Best constant for Hausdorff operators on n-dimensional product
spaces, Sci. China Math. 57 (3), 569-578, 2014.
- [11] D.E. Edmunds, V. Kokilashvili and A. Meskhi, Bounded and Compact Integral Operators,
Kluwer Academic Publishers, 2002.
- [12] G. Gao, X. Wu and W. Guo, Some results for Hausdorff operators, Math. Inequal.
Appl. 18 (1), 155-168, 2015.
- [13] A. Gogatishvili and V.D. Stepanov, Reduction theorems for weighted integral inequalities
on the cone of monotone functions, Russian Math. Surveys 68 (4), 597-664,
2013.
- [14] V.S. Guliyev, Two-weighted inequalities for integral operators in $L_p$-spaces and their
applications, Proc. Steklov Math. Inst. 204 (3), 97-116, 1993.
- [15] A. Hussain and A. Ajaib, Some weighted inequalities for Hausdorff operators and
commutators, J. Inequal. Appl. 2018, Article No. 6, 2018.
- [16] A. Hussain and G. Gao, Multidimensional Hausdorff operators and commutators on
Herz-type spaces, J. Inequal. Appl. 2013, Article No. 594, 2013.
- [17] A. Kufner, L. Maligranda and L.E. Persson, The Hardy inequality: About its history
and some related results, Research report, Department of Mathematics, Luleå
University of Technology, Sweden, 2005.
- [18] S.N Lal and S. Ram, On the absolute Hausdorff summability of a Fourier series,
Pacific J. Math. 42 (2), 439-451, 1972.
- [19] E. Liflyand, Hardy type inequalities in the category of Hausdorff operators, Modern
Meth. Oper. Theory Harmonic Anal. OTHA 2018. Springer Proc. Math. & Stat., 291,
81-91, 2019.
- [20] E. Liflyand and A. Miyachi, Boundedness of the Hausdorff operators in $H^p$ spaces, $0 < p < 1,$ Studia Math. 194 (3), 279-292, 2009.
- [21] E. Liflyand and A. Miyachi, Boundedness of multidimensional Hausdorff operators in
$H^p$ spaces, $0 < p < 1,$ Trans. Amer. Math. Soc. 371 (7), 4793-4814, 2019.
- [22] V.G. Maz’ya, Sobolev Spaces, Springer-Verlag, Berlin, 1985.
- [23] G. Talenti, Osservazione sopra una classe di disuguaglianze, Rend. Sem. Mat. Fiz.
Milano 39 (1), 171-185, 1969.
- [24] G. Tomaselli, A class of inequalities, Boll. Unione Mat. Ital. 2 (1), 622-631, 1969.