Research Article
BibTex RIS Cite
Year 2021, , 991 - 1001, 06.08.2021
https://doi.org/10.15672/hujms.827556

Abstract

References

  • [1] L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vision 10, 51-62, 1999.
  • [2] L. Boxer, Fixed point sets in digital topology, 2, Appl. Gen. Topol. 21 (1), 111-133, 2020.
  • [3] L. Boxer, Convexity and Freezing Sets in Digital Topology, Appl. Gen. Topol. 22 (1), 121-137, 2021.
  • [4] L. Boxer and P.C. Staecker, Fixed point sets in digital topology, 1, Appl. Gen. Topol. 21 (1), 87-110, 2020.
  • [5] L. Chen, Gradually varied surface and its optimal uniform approximation, SPIE Proceedings 2182, 300-307, 1994.
  • [6] L. Chen, Discrete Surfaces and Manifolds, Scientific Practical Computing, Rockville, MD, 2004.
  • [7] J. Haarmann, M.P. Murphy, C.S. Peters, and P.C. Staecker, Homotopy equivalence in finite digital images, J. Math. Imaging Vision 53, 288-302, 2015.
  • [8] A. Rosenfeld, Digital topology, Amer. Math. Monthly 86 (8), 621-630, 1979.
  • [9] A. Rosenfeld, ‘Continuous’ functions on digital pictures, Pattern Recognit. Lett. 4, 177-184, 1986.

Subsets and freezing sets in the digital plane

Year 2021, , 991 - 1001, 06.08.2021
https://doi.org/10.15672/hujms.827556

Abstract

We continue the study of freezing sets for digital images introduced in [L. Boxer and P.C. Staecker, Fixed point sets in digital topology, 1, Applied General Topology 2020; L. Boxer, Fixed point sets in digital topology, 2, Applied General Topology 2020; L. Boxer, Convexity and Freezing Sets in Digital Topology, Applied General Topology, 2021]. We prove methods for obtaining freezing sets for digital images $(X,c_i)$ for $X \subset \mathbb{Z}^2$ and $i \in \{1,2\}$. We give examples to show how these methods can lead to the determination of minimal freezing sets.

References

  • [1] L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vision 10, 51-62, 1999.
  • [2] L. Boxer, Fixed point sets in digital topology, 2, Appl. Gen. Topol. 21 (1), 111-133, 2020.
  • [3] L. Boxer, Convexity and Freezing Sets in Digital Topology, Appl. Gen. Topol. 22 (1), 121-137, 2021.
  • [4] L. Boxer and P.C. Staecker, Fixed point sets in digital topology, 1, Appl. Gen. Topol. 21 (1), 87-110, 2020.
  • [5] L. Chen, Gradually varied surface and its optimal uniform approximation, SPIE Proceedings 2182, 300-307, 1994.
  • [6] L. Chen, Discrete Surfaces and Manifolds, Scientific Practical Computing, Rockville, MD, 2004.
  • [7] J. Haarmann, M.P. Murphy, C.S. Peters, and P.C. Staecker, Homotopy equivalence in finite digital images, J. Math. Imaging Vision 53, 288-302, 2015.
  • [8] A. Rosenfeld, Digital topology, Amer. Math. Monthly 86 (8), 621-630, 1979.
  • [9] A. Rosenfeld, ‘Continuous’ functions on digital pictures, Pattern Recognit. Lett. 4, 177-184, 1986.
There are 9 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Laurence Boxer 0000-0001-7905-9643

Publication Date August 6, 2021
Published in Issue Year 2021

Cite

APA Boxer, L. (2021). Subsets and freezing sets in the digital plane. Hacettepe Journal of Mathematics and Statistics, 50(4), 991-1001. https://doi.org/10.15672/hujms.827556
AMA Boxer L. Subsets and freezing sets in the digital plane. Hacettepe Journal of Mathematics and Statistics. August 2021;50(4):991-1001. doi:10.15672/hujms.827556
Chicago Boxer, Laurence. “Subsets and Freezing Sets in the Digital Plane”. Hacettepe Journal of Mathematics and Statistics 50, no. 4 (August 2021): 991-1001. https://doi.org/10.15672/hujms.827556.
EndNote Boxer L (August 1, 2021) Subsets and freezing sets in the digital plane. Hacettepe Journal of Mathematics and Statistics 50 4 991–1001.
IEEE L. Boxer, “Subsets and freezing sets in the digital plane”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 4, pp. 991–1001, 2021, doi: 10.15672/hujms.827556.
ISNAD Boxer, Laurence. “Subsets and Freezing Sets in the Digital Plane”. Hacettepe Journal of Mathematics and Statistics 50/4 (August 2021), 991-1001. https://doi.org/10.15672/hujms.827556.
JAMA Boxer L. Subsets and freezing sets in the digital plane. Hacettepe Journal of Mathematics and Statistics. 2021;50:991–1001.
MLA Boxer, Laurence. “Subsets and Freezing Sets in the Digital Plane”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 4, 2021, pp. 991-1001, doi:10.15672/hujms.827556.
Vancouver Boxer L. Subsets and freezing sets in the digital plane. Hacettepe Journal of Mathematics and Statistics. 2021;50(4):991-1001.