Existence of three solutions for Kirchhoff-type three-point boundary value problems
Year 2021,
, 304 - 317, 11.04.2021
Shapour Heidarkhani
Amjad Salari
Abstract
The present paper is an attempt to investigate the multiplicity results of solutions for a three-point boundary value problem of Kirchhoff-type. Indeed, we will use variational methods for smooth functionals, defined on the reflexive Banach spaces in order to achieve the existence of at least three solutions for the equation. Finally, by presenting one example, we will ensure the applicability of our results.
References
- [1] D. Anderson, Multiple positive solutions for a three-point boundary value problem,
Math. Comput. Modelling 27, 49-57, 1998.
- [2] G. Autuori, F. Colasuonno and P. Pucci, Blow up at infinity of solutions of polyharmonic
Kirchhoff systems, Complex Var. Elliptic Eqs. 57, 379-395, 2012.
- [3] G. Autuori, F. Colasuonno and P. Pucci, Lifespan estimates for solutions of polyharmonic
Kirchhoff systems, Math. Mod. Meth. Appl. Sci. 22 (2), 1150009, 36 pages,
2012.
- [4] G. Autuori, F. Colasuonno and P. Pucci, On the existence of stationary solutions for
higher-order p-Kirchhoff problems, Commun. Contemp. Math. 16 (5), 1450002, 43
pages, 2014.
- [5] J.R. Cannon, The One-dimensional Heat Equation, Encyclopedia of Mathematics and
Its Applications, 23, Addison-Wesley, Menlo Park, California, USA, 1984.
- [6] J.R. Cannon, E.P. Esteva and J. Van der hock, A Galerkin procedure for the diffusion
equation subject to specification of mass, SIAM J. Numer. Anal. 24, 499-515, 1987.
- [7] F. Colasuonno and P. Pucci, Multiplicity of solutions for p(x)-polyharmonic elliptic
Kirchhoff equations, Nonlinear Anal. 74 (17), 5962-5974, 2011.
- [8] Z. Du and L. Kong, Existence of three solutions for systems of multi-point boundary
value problems, Electron. J. Qual. Theory Diff. Equ. 10 (1), 1-17, 2009.
- [9] Z. Du, C. Xue and W. Ge, Multiple solutions for three-point boundary value problem
with nonlinear terms depending on the first order derivative, Arch. Math. 84 (4),
341-349, 2005.
- [10] W. Feng and J.R.L. Webb, Solvability of m-point boundary value problems with nonlinear
growth, J. Math. Anal. Appl. 212 (2), 467-480, 1997.
- [11] G.M. Figueiredo, G. Molica Bisci and R. Servadei, On a fractional Kirchhoff-type
equation via Krasnoselskii’s genus, Asymptot. Anal. 94 (3-4), 347-361, 2015.
- [12] J.R. Graef, S. Heidarkhani and L. Kong, Infinitely many solutions for systems of
multi-point boundary value problems, Topol. Methods Nonlinear Anal. 42 (1), 105-
118, 2013.
- [13] J.R. Graef and L. Kong, Existence of solutions for nonlinear boundary value problems,
Comm. Appl. Nonl. Anal. 14 (1), 39-60, 2007.
- [14] J.R. Graef, L. Kong and Q. Kong, Higher order multi-point boundary value problems,
Math. Nachr. 284 (1), 39–52, 2011.
- [15] C.P. Gupta, Solvability of a three-point nonlinear boundary value problem for a second
order ordinary differential equation, J. Math. Anal. Appl. 168 (2), 540-551, 1992.
- [16] X. He and W. Ge, Triple solutions for second order three-point boundary value problems,
J. Math. Anal. Appl. 268 (1), 256-265, 2002.
- [17] S. Heidarkhani, Multiple solutions for a class of multipoint boundary value systems
driven by a one dimensional $(p_1, \ldots , p_n)$-Laplacian operator, Abstr. Appl. Anal.
2012, Article ID 389530, 15 pages, 2012.
- [18] S. Heidarkhani, Infinitely many solutions for systems of n two-point Kirchhoff-type
boundary value problems, Ann. Polon. Math. 107, 133-152, 2013.
- [19] S. Heidarkhani, G.A. Afrouzi and D. O’Regan, Existence of three solutions for a
Kirchhoff-type boundary-value problem, Electronic J. Differ. Equ. 2011, No. 91, 1-11,
2011.
- [20] S. Heidarkhani and A. Salari, Existence of three solutions for impulsive perturbed
elastic beam fourth-order equations of Kirchhoff-type, Stud. Sci. Math. Hungarica, 54
(1), 119140, 2017.
- [21] J. Henderson, Solutions of multi-point boundary value problems for second order equations,
Dynam. Syst. Appl. 15 (1), 111-117, 2006.
- [22] J. Henderson, B. Karna and C. Tisdell, Existence of solutions for three-point boundary
value problems for second order equations, Proc. Amer. Math. Soc. 133(5), 1365-1369,
2005.
- [23] J. Henderson and S.K. Ntouyas, Positive solutions for systems of nth order three-point
nonlocal boundary value problems, Electron. J. Qual. Theory Diff. Equ. 2007, No. 18,
1-12, 2007.
- [24] V.A. Il’in and E.I. Moiseev, Nonlocal boundary value problem of the second kind for
a Sturm–Liouville operator, Differ. Equ. 23 (7), 979-987, 1987.
- [25] G. Infante, Positive solutions of some three-point boundary value problems via fixed
point index for weakly inward A-proper maps, Fixed Point Theory Appl. 2005 (2),
177-184, 2005.
- [26] N.I. Ionkin, The solution of a certain boundary value problem of the theory of heat
conduction with a nonclassical boundary condition, Diff. Uravn. 13 (2), 294-304, 1977.
- [27] N.I. Kamyuin, A boundary value problem in the theory of the heat conduction with
nonclassical boundary condition, USSR Comput. Math. Phy. 4 (6), 33-59, 1964.
- [28] G. Kirchhoff, Vorlesungen über mathematische Physik, Mechanik, Teubner, Leipzig,
1883.
- [29] X. Lin, Existence of three solutions for a three-point boundary value problem via a
three-critical-point theorem, Carpathian J. Math. 31, 213-220, 2015.
- [30] J.L. Lions, On some questions in boundary value problems of mathematical physics,
in: Contemporary Developments in Continuum Mechanics and Partial Differential
Equations, (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de
Janeiro, 1977), North-Holland Math. Stud. 30, 284-346. North-Holland, Amsterdam,
1978.
- [31] R. Ma, Positive solutions for second order three-point boundary value problems, Appl.
Math. Lett. 14 (1), 1-5, 2001.
- [32] R. Ma, Multiplicity results for a three-point boundary value problems at resonance,
Nonlinear Anal. 53 (6), 777-789, 2003.
- [33] R. Ma and H. Wang, Positive solutions of nonlinear three-point boundary-value problems,
J. Math. Anal. Appl. 279 (1), 216-227, 2003.
- [34] X. Mingqi, G. Molica Bisci, G. Tian and B. Zhang, Infinitely many solutions for the
stationary Kirchhoff problems involving the fractional p-Laplacian, Nonlinearity 29
(2), 357-374, 2016.
- [35] G. Molica Bisci and P. Pizzimenti, Sequences of weak solutions for non-local elliptic
problems with Dirichlet boundary condition, Proc. Edinb. Math. Soc. 57 (3), 779-809,
2014.
- [36] G. Molica Bisci and V. Rădulescu, Applications of local linking to nonlocal Neumann
problems, Commun. Contemp. Math. 17 (1), 1450001, 17 pages, 2014.
- [37] G. Molica Bisci and V. Rădulescu, Mountain pass solutions for nonlocal equations,
Annales AcademiæScientiarum FennicæMathematica 39, 579-59, 2014.
- [38] G. Molica Bisci, and D. Repovš, On doubly nonlocal fractional elliptic equations, Atti
Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26, 161-176, 2015.
- [39] G. Molica Bisci and L. Vilasi, On a fractional degenerate Kirchhoff-type problem,
Commun. Contemp. Math. 19 (1), 1550088, 23 pp, 2017.
- [40] M. Moshinsky, Sobre los problemas de condiciones a la frontier en una dimension de
caracteristicas discontinues, Bol. Soc. Mat. Mexicana 7, 1-25, 1950.
- [41] K. Perera and Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang
index, J. Differ. Equ. 221 (1), 246-255, 2006.
- [42] B. Ricceri, A further three critical points theorem, Nonlinear Anal. TMA 71 (9),
4151-4157, 2009.
- [43] B. Ricceri, On an elliptic Kirchhoff-type problem depending on two parameters, J.
Global Optim. 46 (4), 543-549, 2010.
- [44] Y. Sun, Positive solutions of singular third-order three-point boundary value problem,
J. Math. Anal. Appl. 306 (2), 589-603, 2005.
- [45] J. Sun, H. Chen, J. Nieto and M. Otero-Novoa, The multiplicity of solutions for
perturbed second-order Hamiltonian systems with impulsive effects, Nonlinear Anal.
72 (12), 4575-4586, 2010.
- [46] Y. Sun, L. Liu, J. Zhang and R.P. Agarwal, Positive solutions of singular three-point
boundary value problems for second-order differential equations, J. Comput. Appl.
Math. 230 (2), 738–750, 2009.
- [47] S. Timoshenko, Theory of elastic stability, McGraw Hill, New York, 1961.
- [48] X. Xu, Multiplicity results for positive solutions of some semi-positone three-point
boundary value problems, J. Math. Anal. Appl. 291 (2), 673-689, 2004.
- [49] Q. Yao, Positive solutions of singular third-order three-point boundary value problems,
J. Math. Anal. Appl. 354 (1), 207-212, 2009.
- [50] E. Zeidler, Nonlinear functional analysis and its applications, II/B, Springer-Verlag,
New York, 1990.
Year 2021,
, 304 - 317, 11.04.2021
Shapour Heidarkhani
Amjad Salari
References
- [1] D. Anderson, Multiple positive solutions for a three-point boundary value problem,
Math. Comput. Modelling 27, 49-57, 1998.
- [2] G. Autuori, F. Colasuonno and P. Pucci, Blow up at infinity of solutions of polyharmonic
Kirchhoff systems, Complex Var. Elliptic Eqs. 57, 379-395, 2012.
- [3] G. Autuori, F. Colasuonno and P. Pucci, Lifespan estimates for solutions of polyharmonic
Kirchhoff systems, Math. Mod. Meth. Appl. Sci. 22 (2), 1150009, 36 pages,
2012.
- [4] G. Autuori, F. Colasuonno and P. Pucci, On the existence of stationary solutions for
higher-order p-Kirchhoff problems, Commun. Contemp. Math. 16 (5), 1450002, 43
pages, 2014.
- [5] J.R. Cannon, The One-dimensional Heat Equation, Encyclopedia of Mathematics and
Its Applications, 23, Addison-Wesley, Menlo Park, California, USA, 1984.
- [6] J.R. Cannon, E.P. Esteva and J. Van der hock, A Galerkin procedure for the diffusion
equation subject to specification of mass, SIAM J. Numer. Anal. 24, 499-515, 1987.
- [7] F. Colasuonno and P. Pucci, Multiplicity of solutions for p(x)-polyharmonic elliptic
Kirchhoff equations, Nonlinear Anal. 74 (17), 5962-5974, 2011.
- [8] Z. Du and L. Kong, Existence of three solutions for systems of multi-point boundary
value problems, Electron. J. Qual. Theory Diff. Equ. 10 (1), 1-17, 2009.
- [9] Z. Du, C. Xue and W. Ge, Multiple solutions for three-point boundary value problem
with nonlinear terms depending on the first order derivative, Arch. Math. 84 (4),
341-349, 2005.
- [10] W. Feng and J.R.L. Webb, Solvability of m-point boundary value problems with nonlinear
growth, J. Math. Anal. Appl. 212 (2), 467-480, 1997.
- [11] G.M. Figueiredo, G. Molica Bisci and R. Servadei, On a fractional Kirchhoff-type
equation via Krasnoselskii’s genus, Asymptot. Anal. 94 (3-4), 347-361, 2015.
- [12] J.R. Graef, S. Heidarkhani and L. Kong, Infinitely many solutions for systems of
multi-point boundary value problems, Topol. Methods Nonlinear Anal. 42 (1), 105-
118, 2013.
- [13] J.R. Graef and L. Kong, Existence of solutions for nonlinear boundary value problems,
Comm. Appl. Nonl. Anal. 14 (1), 39-60, 2007.
- [14] J.R. Graef, L. Kong and Q. Kong, Higher order multi-point boundary value problems,
Math. Nachr. 284 (1), 39–52, 2011.
- [15] C.P. Gupta, Solvability of a three-point nonlinear boundary value problem for a second
order ordinary differential equation, J. Math. Anal. Appl. 168 (2), 540-551, 1992.
- [16] X. He and W. Ge, Triple solutions for second order three-point boundary value problems,
J. Math. Anal. Appl. 268 (1), 256-265, 2002.
- [17] S. Heidarkhani, Multiple solutions for a class of multipoint boundary value systems
driven by a one dimensional $(p_1, \ldots , p_n)$-Laplacian operator, Abstr. Appl. Anal.
2012, Article ID 389530, 15 pages, 2012.
- [18] S. Heidarkhani, Infinitely many solutions for systems of n two-point Kirchhoff-type
boundary value problems, Ann. Polon. Math. 107, 133-152, 2013.
- [19] S. Heidarkhani, G.A. Afrouzi and D. O’Regan, Existence of three solutions for a
Kirchhoff-type boundary-value problem, Electronic J. Differ. Equ. 2011, No. 91, 1-11,
2011.
- [20] S. Heidarkhani and A. Salari, Existence of three solutions for impulsive perturbed
elastic beam fourth-order equations of Kirchhoff-type, Stud. Sci. Math. Hungarica, 54
(1), 119140, 2017.
- [21] J. Henderson, Solutions of multi-point boundary value problems for second order equations,
Dynam. Syst. Appl. 15 (1), 111-117, 2006.
- [22] J. Henderson, B. Karna and C. Tisdell, Existence of solutions for three-point boundary
value problems for second order equations, Proc. Amer. Math. Soc. 133(5), 1365-1369,
2005.
- [23] J. Henderson and S.K. Ntouyas, Positive solutions for systems of nth order three-point
nonlocal boundary value problems, Electron. J. Qual. Theory Diff. Equ. 2007, No. 18,
1-12, 2007.
- [24] V.A. Il’in and E.I. Moiseev, Nonlocal boundary value problem of the second kind for
a Sturm–Liouville operator, Differ. Equ. 23 (7), 979-987, 1987.
- [25] G. Infante, Positive solutions of some three-point boundary value problems via fixed
point index for weakly inward A-proper maps, Fixed Point Theory Appl. 2005 (2),
177-184, 2005.
- [26] N.I. Ionkin, The solution of a certain boundary value problem of the theory of heat
conduction with a nonclassical boundary condition, Diff. Uravn. 13 (2), 294-304, 1977.
- [27] N.I. Kamyuin, A boundary value problem in the theory of the heat conduction with
nonclassical boundary condition, USSR Comput. Math. Phy. 4 (6), 33-59, 1964.
- [28] G. Kirchhoff, Vorlesungen über mathematische Physik, Mechanik, Teubner, Leipzig,
1883.
- [29] X. Lin, Existence of three solutions for a three-point boundary value problem via a
three-critical-point theorem, Carpathian J. Math. 31, 213-220, 2015.
- [30] J.L. Lions, On some questions in boundary value problems of mathematical physics,
in: Contemporary Developments in Continuum Mechanics and Partial Differential
Equations, (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de
Janeiro, 1977), North-Holland Math. Stud. 30, 284-346. North-Holland, Amsterdam,
1978.
- [31] R. Ma, Positive solutions for second order three-point boundary value problems, Appl.
Math. Lett. 14 (1), 1-5, 2001.
- [32] R. Ma, Multiplicity results for a three-point boundary value problems at resonance,
Nonlinear Anal. 53 (6), 777-789, 2003.
- [33] R. Ma and H. Wang, Positive solutions of nonlinear three-point boundary-value problems,
J. Math. Anal. Appl. 279 (1), 216-227, 2003.
- [34] X. Mingqi, G. Molica Bisci, G. Tian and B. Zhang, Infinitely many solutions for the
stationary Kirchhoff problems involving the fractional p-Laplacian, Nonlinearity 29
(2), 357-374, 2016.
- [35] G. Molica Bisci and P. Pizzimenti, Sequences of weak solutions for non-local elliptic
problems with Dirichlet boundary condition, Proc. Edinb. Math. Soc. 57 (3), 779-809,
2014.
- [36] G. Molica Bisci and V. Rădulescu, Applications of local linking to nonlocal Neumann
problems, Commun. Contemp. Math. 17 (1), 1450001, 17 pages, 2014.
- [37] G. Molica Bisci and V. Rădulescu, Mountain pass solutions for nonlocal equations,
Annales AcademiæScientiarum FennicæMathematica 39, 579-59, 2014.
- [38] G. Molica Bisci, and D. Repovš, On doubly nonlocal fractional elliptic equations, Atti
Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26, 161-176, 2015.
- [39] G. Molica Bisci and L. Vilasi, On a fractional degenerate Kirchhoff-type problem,
Commun. Contemp. Math. 19 (1), 1550088, 23 pp, 2017.
- [40] M. Moshinsky, Sobre los problemas de condiciones a la frontier en una dimension de
caracteristicas discontinues, Bol. Soc. Mat. Mexicana 7, 1-25, 1950.
- [41] K. Perera and Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang
index, J. Differ. Equ. 221 (1), 246-255, 2006.
- [42] B. Ricceri, A further three critical points theorem, Nonlinear Anal. TMA 71 (9),
4151-4157, 2009.
- [43] B. Ricceri, On an elliptic Kirchhoff-type problem depending on two parameters, J.
Global Optim. 46 (4), 543-549, 2010.
- [44] Y. Sun, Positive solutions of singular third-order three-point boundary value problem,
J. Math. Anal. Appl. 306 (2), 589-603, 2005.
- [45] J. Sun, H. Chen, J. Nieto and M. Otero-Novoa, The multiplicity of solutions for
perturbed second-order Hamiltonian systems with impulsive effects, Nonlinear Anal.
72 (12), 4575-4586, 2010.
- [46] Y. Sun, L. Liu, J. Zhang and R.P. Agarwal, Positive solutions of singular three-point
boundary value problems for second-order differential equations, J. Comput. Appl.
Math. 230 (2), 738–750, 2009.
- [47] S. Timoshenko, Theory of elastic stability, McGraw Hill, New York, 1961.
- [48] X. Xu, Multiplicity results for positive solutions of some semi-positone three-point
boundary value problems, J. Math. Anal. Appl. 291 (2), 673-689, 2004.
- [49] Q. Yao, Positive solutions of singular third-order three-point boundary value problems,
J. Math. Anal. Appl. 354 (1), 207-212, 2009.
- [50] E. Zeidler, Nonlinear functional analysis and its applications, II/B, Springer-Verlag,
New York, 1990.