[1] M. Amini and N. Nematollahi, Estimation of the parameters of a selected multivariate
population, Sankhya A 79 (1), 13-38, 2017.
[2] M. Arshad and O. Abdalghani, Estimation after selection from uniform populations
under an asymmetric loss function, Amer. J. Math. Manage. Scie. 38 (4), 349362,
2019.
[3] M. Arshad and O. Abdalghani, On estimating the location parameter of the selected
exponential population under the LINEX loss function, Braz. J. Probab. Stat. 34 (1),
167-182, 2020.
[4] M. Arshad and N. Misra, Selecting the exponential population having the larger guarantee
time with unequal sample sizes, Comm. Statist. Theory Methods 44 (19), 4144-
4171, 2015.
[5] M. Arshad and N. Misra, Estimation after selection from uniform populations with
unequal sample sizes, Amer. J. Math. Manage. Scie, 34 (4), 367-391, 2015.
[6] M. Arshad and N. Misra, Estimation after selection from exponential populations with
unequal scale parameters, Statist. Papers 57 (3), 605-621, 2016.
[7] M. Arshad and N. Misra, On estimating the scale parameter of the selected uniform
population under the entropy loss function, Braz. J. Probab. Stat. 31 (2), 303-319,
2017.
[8] M. Arshad, N. Misra and P. Vellaisamy, Estimation after selection from gamma populations
with unequal known shape parameters, J. Stat. Theory Pract. 9 (2), 395-418,
2015.
[9] J.F. Brewster and Z.V. Zidek, Improving on equivariant estimators, Ann. Statist. 2
(1), 21-38, 1974.
[10] A. Cohen and H.B. Sackrowitz, Estimating the mean of the selected population, in
S.S. Gupta and J.O. Berger (ed.) Statistical Decision Theory and Related Topics-III,
1st ed., 243-270, 1982.
[11] R.C. Dahiya, Estimation of the mean of the selected population, J. Amer. Statist.
Assoc. 69 (345), 226-230, 1974.
[12] C. Fuentes, G. Casella and M.T. Wells, Confidence intervals for the means of the
selected populations, Electron. J. Stat. 12 (1), 58-79, 2018.
[13] S. Korkmaz, D. Goksuluk and G. Zararsiz, MVN: An R package for assessing multivariate
normality, R Journal 6 (2), 151-162, 2014.
[14] X. Lu, A. Sun and S.S. Wu, On estimating the mean of the selected normal population
in two-stage adaptive designs, J. Statist. Plann. Inference 143 (7), 1215-1220, 2013.
[15] K.R. Meena, M. Arshad and A.K. Gangopadhyay, Estimating the parameter of selected
uniform population under the squared log error loss function, Comm. Statist.
Theory Methods 47 (7), 1679-1692, 2018.
[16] K.R. Meena and A.K. Gangopadhyay, Estimating volatility of the selected security,
Amer. J. Math. Manage. Scie. 36 (3), 177-187, 2017.
[17] K.R. Meena and A.K. Gangopadhyay, Estimating parameter of the selected uniform
population under the generalized stein loss function, Appl. Appl. Math. 15 (2), 894-
915, 2020.
[18] K.R. Meena, A.K. Gangopadhyay and O. Abdalghani, On estimating scale parameter
of the selected Pareto population under the generalized Stein loss, Amer. J. Math.
Manage. Scie. 40 (4) 357-377, 2021.
[19] N. Misra and M. Arshad, Selecting the best of two gamma populations having unequal
shape parameters, Stat. Methodol. 18, 41-63, 2014.
[20] N. Misra and I.D. Dhariyal, Non-minimaxity of natural decision rules under heteroscedasticity,
Statistics & Decisions 12, 79-89, 1994.
[21] N. Misra and E.C. van der Meulen, On estimation following selection from nonregular
distributions, Comm. Statist. Theory Methods 30 (12), 2543-2561, 2001.
[22] N. Misra and E.C. van der Meulen, On estimating the mean of the selected normal
population under the LINEX loss function, Metrika 58 (2), 173183, 2003.
[23] Z. Mohammadi and M. Towhidi, Estimating the parameters of a selected bivariate
normal population, Statist. Probab. Lett. 122, 205-210, 2017.
[24] N. Nematollahi and M.J. Jozani, On risk unbiased estimation after selection, Braz.
J. Probab. Stat. 30 (1), 91-106, 2016.
[25] A.A. Olosunde, On exponential power distribution and poultry feeds data: a case
study, J. Iran. Stat. Soc. (JIRSS) 12 (2), 253-270, 2013.
[26] A. Parsian and N.S. Farsipour, Estimation of the mean of the selected population
under asymmetric loss function, Metrika 50 (2), 89-107, 1999.
[27] J. Putter and D. Rubinstein, On estimating the mean of a selected population, Technical
Report No. 165, Department of Statistics, University of Wisconsin, 1968.
[28] H.B. Sackrowitz and E. Samuel-Cahn, Evaluating the chosen population: a Bayes and
minimax approach, in: Adaptive Statistical Procedures and Related Topics, Lecture
Notes - Monograph Series 8, 386399, 1986.
[29] N. Stallard, S. Todd and J. Whitehead, Estimation following selection of the largest
of two normal means, J. Statist. Plann. Inference 138 (6), 1629-1638, 2008.
[30] P. Vellaisamy, A note on unbiased estimation following selection, Stat. Methodol. 6
(4), 389-396, 2009.
[31] P. Vellaisamy and A.P. Punnen, Improved estimators for the selected location parameters,
Statist. Papers 43 (2), 291-299, 2002.
[32] A. Zellner, Bayesian estimation and prediction using asymmetric loss functions, J.
Amer. Statist. Assoc. 81 (394), 446-451, 1986.
Estimation after selection from bivariate normal population with application to poultry feeds data
In many practical situations, it is often desired to select a population (treatment, product, technology, etc.) from a choice of several populations on the basis of a particular characteristic that associated with each population, and then estimate the characteristic associated with the selected population. The present paper is focused on estimating a characteristic of the selected bivariate normal population, using a LINEX loss function. A natural selection rule is used for achieving the aim of selecting the best bivariate normal population. Some natural-type estimators and Bayes estimator (using a conjugate prior) of a parameter of the selected population are presented. An admissible subclass of equivariant estimators, using the LINEX loss function, is obtained. Further, a sufficient condition for improving the competing estimators is derived. Using this sufficient condition, several estimators improving upon the proposed natural estimators are obtained. Further, an application of the derived results is provided by considering the poultry feeds data. Finally, a comparative study on the competing estimators of a parameter of the selected population is carried-out using simulation.
[1] M. Amini and N. Nematollahi, Estimation of the parameters of a selected multivariate
population, Sankhya A 79 (1), 13-38, 2017.
[2] M. Arshad and O. Abdalghani, Estimation after selection from uniform populations
under an asymmetric loss function, Amer. J. Math. Manage. Scie. 38 (4), 349362,
2019.
[3] M. Arshad and O. Abdalghani, On estimating the location parameter of the selected
exponential population under the LINEX loss function, Braz. J. Probab. Stat. 34 (1),
167-182, 2020.
[4] M. Arshad and N. Misra, Selecting the exponential population having the larger guarantee
time with unequal sample sizes, Comm. Statist. Theory Methods 44 (19), 4144-
4171, 2015.
[5] M. Arshad and N. Misra, Estimation after selection from uniform populations with
unequal sample sizes, Amer. J. Math. Manage. Scie, 34 (4), 367-391, 2015.
[6] M. Arshad and N. Misra, Estimation after selection from exponential populations with
unequal scale parameters, Statist. Papers 57 (3), 605-621, 2016.
[7] M. Arshad and N. Misra, On estimating the scale parameter of the selected uniform
population under the entropy loss function, Braz. J. Probab. Stat. 31 (2), 303-319,
2017.
[8] M. Arshad, N. Misra and P. Vellaisamy, Estimation after selection from gamma populations
with unequal known shape parameters, J. Stat. Theory Pract. 9 (2), 395-418,
2015.
[9] J.F. Brewster and Z.V. Zidek, Improving on equivariant estimators, Ann. Statist. 2
(1), 21-38, 1974.
[10] A. Cohen and H.B. Sackrowitz, Estimating the mean of the selected population, in
S.S. Gupta and J.O. Berger (ed.) Statistical Decision Theory and Related Topics-III,
1st ed., 243-270, 1982.
[11] R.C. Dahiya, Estimation of the mean of the selected population, J. Amer. Statist.
Assoc. 69 (345), 226-230, 1974.
[12] C. Fuentes, G. Casella and M.T. Wells, Confidence intervals for the means of the
selected populations, Electron. J. Stat. 12 (1), 58-79, 2018.
[13] S. Korkmaz, D. Goksuluk and G. Zararsiz, MVN: An R package for assessing multivariate
normality, R Journal 6 (2), 151-162, 2014.
[14] X. Lu, A. Sun and S.S. Wu, On estimating the mean of the selected normal population
in two-stage adaptive designs, J. Statist. Plann. Inference 143 (7), 1215-1220, 2013.
[15] K.R. Meena, M. Arshad and A.K. Gangopadhyay, Estimating the parameter of selected
uniform population under the squared log error loss function, Comm. Statist.
Theory Methods 47 (7), 1679-1692, 2018.
[16] K.R. Meena and A.K. Gangopadhyay, Estimating volatility of the selected security,
Amer. J. Math. Manage. Scie. 36 (3), 177-187, 2017.
[17] K.R. Meena and A.K. Gangopadhyay, Estimating parameter of the selected uniform
population under the generalized stein loss function, Appl. Appl. Math. 15 (2), 894-
915, 2020.
[18] K.R. Meena, A.K. Gangopadhyay and O. Abdalghani, On estimating scale parameter
of the selected Pareto population under the generalized Stein loss, Amer. J. Math.
Manage. Scie. 40 (4) 357-377, 2021.
[19] N. Misra and M. Arshad, Selecting the best of two gamma populations having unequal
shape parameters, Stat. Methodol. 18, 41-63, 2014.
[20] N. Misra and I.D. Dhariyal, Non-minimaxity of natural decision rules under heteroscedasticity,
Statistics & Decisions 12, 79-89, 1994.
[21] N. Misra and E.C. van der Meulen, On estimation following selection from nonregular
distributions, Comm. Statist. Theory Methods 30 (12), 2543-2561, 2001.
[22] N. Misra and E.C. van der Meulen, On estimating the mean of the selected normal
population under the LINEX loss function, Metrika 58 (2), 173183, 2003.
[23] Z. Mohammadi and M. Towhidi, Estimating the parameters of a selected bivariate
normal population, Statist. Probab. Lett. 122, 205-210, 2017.
[24] N. Nematollahi and M.J. Jozani, On risk unbiased estimation after selection, Braz.
J. Probab. Stat. 30 (1), 91-106, 2016.
[25] A.A. Olosunde, On exponential power distribution and poultry feeds data: a case
study, J. Iran. Stat. Soc. (JIRSS) 12 (2), 253-270, 2013.
[26] A. Parsian and N.S. Farsipour, Estimation of the mean of the selected population
under asymmetric loss function, Metrika 50 (2), 89-107, 1999.
[27] J. Putter and D. Rubinstein, On estimating the mean of a selected population, Technical
Report No. 165, Department of Statistics, University of Wisconsin, 1968.
[28] H.B. Sackrowitz and E. Samuel-Cahn, Evaluating the chosen population: a Bayes and
minimax approach, in: Adaptive Statistical Procedures and Related Topics, Lecture
Notes - Monograph Series 8, 386399, 1986.
[29] N. Stallard, S. Todd and J. Whitehead, Estimation following selection of the largest
of two normal means, J. Statist. Plann. Inference 138 (6), 1629-1638, 2008.
[30] P. Vellaisamy, A note on unbiased estimation following selection, Stat. Methodol. 6
(4), 389-396, 2009.
[31] P. Vellaisamy and A.P. Punnen, Improved estimators for the selected location parameters,
Statist. Papers 43 (2), 291-299, 2002.
[32] A. Zellner, Bayesian estimation and prediction using asymmetric loss functions, J.
Amer. Statist. Assoc. 81 (394), 446-451, 1986.
Arshad, M., Abdalghani, O., Meena, K. R., Pathak, A. (2022). Estimation after selection from bivariate normal population with application to poultry feeds data. Hacettepe Journal of Mathematics and Statistics, 51(4), 1141-1159. https://doi.org/10.15672/hujms.936367
AMA
Arshad M, Abdalghani O, Meena KR, Pathak A. Estimation after selection from bivariate normal population with application to poultry feeds data. Hacettepe Journal of Mathematics and Statistics. August 2022;51(4):1141-1159. doi:10.15672/hujms.936367
Chicago
Arshad, Mohd., Omer Abdalghani, K. R. Meena, and Ashok Pathak. “Estimation After Selection from Bivariate Normal Population With Application to Poultry Feeds Data”. Hacettepe Journal of Mathematics and Statistics 51, no. 4 (August 2022): 1141-59. https://doi.org/10.15672/hujms.936367.
EndNote
Arshad M, Abdalghani O, Meena KR, Pathak A (August 1, 2022) Estimation after selection from bivariate normal population with application to poultry feeds data. Hacettepe Journal of Mathematics and Statistics 51 4 1141–1159.
IEEE
M. Arshad, O. Abdalghani, K. R. Meena, and A. Pathak, “Estimation after selection from bivariate normal population with application to poultry feeds data”, Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 4, pp. 1141–1159, 2022, doi: 10.15672/hujms.936367.
ISNAD
Arshad, Mohd. et al. “Estimation After Selection from Bivariate Normal Population With Application to Poultry Feeds Data”. Hacettepe Journal of Mathematics and Statistics 51/4 (August 2022), 1141-1159. https://doi.org/10.15672/hujms.936367.
JAMA
Arshad M, Abdalghani O, Meena KR, Pathak A. Estimation after selection from bivariate normal population with application to poultry feeds data. Hacettepe Journal of Mathematics and Statistics. 2022;51:1141–1159.
MLA
Arshad, Mohd. et al. “Estimation After Selection from Bivariate Normal Population With Application to Poultry Feeds Data”. Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 4, 2022, pp. 1141-59, doi:10.15672/hujms.936367.
Vancouver
Arshad M, Abdalghani O, Meena KR, Pathak A. Estimation after selection from bivariate normal population with application to poultry feeds data. Hacettepe Journal of Mathematics and Statistics. 2022;51(4):1141-59.