[1] G.A. Afrouzi and A. Hadjian, Infinitely many solutions for a class of Dirichlet quasilinear
elliptic systems, J. Math. Anal. Appl. 393, 265-272, 2012.
[2] G.A. Afrouzi and A. Hadjian, Infinitely many solutions for a Dirichlet boundary value
problem depending on two parameters, Glas. Mat. 48, 357-371, 2013.
[3] G.A. Afrouzi, A. Hadjian and S. Heidarkhani, Non-trivial solutions for a two-point
boundary value problem, Ann. Polon. Math. 108, 75-84, 2013.
[4] G.A. Afrouzi, A. Hadjian and V.D. Rădulescu, A variational approach of Sturm-
Liouville problems with the nonlinearity depending on the derivative, Bound. Value
Probl. 2015 (81), 2015.
[5] G.A. Afrouzi and S. Heidarkhani, Three solutions for a quasilinear boundary value
problem, Nonlinear Anal. 69, 3330-3336, 2008.
[6] D. Averna and G. Bonanno, A three critical point theorem and its applications to the
ordinary Dirichlet problem, Topol. Methods Nonlinear Anal. 22, 93-103, 2003.
[7] D. Averna and G. Bonanno, Three solutions for a quasilinear two-point boundaryvalue
problem involving the one-dimensional p-Laplacian, Proc. Edinb. Math. Soc.
47, 257-270, 2004.
[8] G. D’Aguì, S. Heidarkhani and A. Sciammetta, Infinitely many solutions for a class
of quasilinear two-point boundary value systems, Electron. J. Qual. Theory Differ.
Equ. 2015 (8), 2015.
[9] J.R. Graef, S. Heidarkhani and L. Kong, A critical points approach for the existence
of multiple solutions of a Dirichlet quasilinear system, J. Math. Anal. Appl. 388,
1268-1278, 2012.
[10] S. Heidarkhani, Multiple solutions for a quasilinear second order differential equation
depending on a parameter, Acta Math. Appl. Sin. Engl. Ser. 32, 199-208, 2016.
[11] S. Heidarkhani, M. Ferrara, G.A. Afrouzi, G. Caristi and S. Moradi, Existence of
solutions for Dirichlet quasilinear systems including a nonlinear function of the derivative,
Electron. J. Differential Equations 2016 (56), 2016.
[12] S. Heidarkhani and J. Henderson, Critical point approaches to quasilinear second order
differential equations depending on a parameter, Topol. Methods Nonlinear Anal. 44,
177-197, 2014.
[13] S. Heidarkhani and J. Henderson, Multiple solutions for a Dirichlet quasilinear system
containing a parameter, Georgian Math. J. 21, 187-197, 2014.
[14] S. Heidarkhani and D. Motreanu, Multiplicity results for a two-point boundary value
problem, PanAmer. Math. J. 19, 69-78, 2009.
[15] B. Ricceri, A general variational principle and some of its applications, J. Comput.
Appl. Math. 113, 401-410, 2000.
[16] S. Shakeri and A. Hadjian, Multiplicity results for a two-point boundary value problem,
J. Appl. Math. Comput. 49, 329-342, 2015.
[17] G. Talenti, Some inequalities of Sobolev type on two-dimensional spheres, in: W.
Walter (Ed.), General Inequalities 5, in: Internat. Ser. Numer. Math. 80, 401-408,
Birkhäuser, Basel, 1987.
Existence results for a Dirichlet boundary value problem through a local minimization principle
In this paper, a local minimum result for differentiable functionals is exploited in order to prove that a perturbed Dirichlet boundary value problem including a Lipschitz continuous non-linear term admits at least one non-trivial weak solution under an asymptotical behaviour of the nonlinear datum at zero. Some special cases and a concrete example of an application is then presented.
[1] G.A. Afrouzi and A. Hadjian, Infinitely many solutions for a class of Dirichlet quasilinear
elliptic systems, J. Math. Anal. Appl. 393, 265-272, 2012.
[2] G.A. Afrouzi and A. Hadjian, Infinitely many solutions for a Dirichlet boundary value
problem depending on two parameters, Glas. Mat. 48, 357-371, 2013.
[3] G.A. Afrouzi, A. Hadjian and S. Heidarkhani, Non-trivial solutions for a two-point
boundary value problem, Ann. Polon. Math. 108, 75-84, 2013.
[4] G.A. Afrouzi, A. Hadjian and V.D. Rădulescu, A variational approach of Sturm-
Liouville problems with the nonlinearity depending on the derivative, Bound. Value
Probl. 2015 (81), 2015.
[5] G.A. Afrouzi and S. Heidarkhani, Three solutions for a quasilinear boundary value
problem, Nonlinear Anal. 69, 3330-3336, 2008.
[6] D. Averna and G. Bonanno, A three critical point theorem and its applications to the
ordinary Dirichlet problem, Topol. Methods Nonlinear Anal. 22, 93-103, 2003.
[7] D. Averna and G. Bonanno, Three solutions for a quasilinear two-point boundaryvalue
problem involving the one-dimensional p-Laplacian, Proc. Edinb. Math. Soc.
47, 257-270, 2004.
[8] G. D’Aguì, S. Heidarkhani and A. Sciammetta, Infinitely many solutions for a class
of quasilinear two-point boundary value systems, Electron. J. Qual. Theory Differ.
Equ. 2015 (8), 2015.
[9] J.R. Graef, S. Heidarkhani and L. Kong, A critical points approach for the existence
of multiple solutions of a Dirichlet quasilinear system, J. Math. Anal. Appl. 388,
1268-1278, 2012.
[10] S. Heidarkhani, Multiple solutions for a quasilinear second order differential equation
depending on a parameter, Acta Math. Appl. Sin. Engl. Ser. 32, 199-208, 2016.
[11] S. Heidarkhani, M. Ferrara, G.A. Afrouzi, G. Caristi and S. Moradi, Existence of
solutions for Dirichlet quasilinear systems including a nonlinear function of the derivative,
Electron. J. Differential Equations 2016 (56), 2016.
[12] S. Heidarkhani and J. Henderson, Critical point approaches to quasilinear second order
differential equations depending on a parameter, Topol. Methods Nonlinear Anal. 44,
177-197, 2014.
[13] S. Heidarkhani and J. Henderson, Multiple solutions for a Dirichlet quasilinear system
containing a parameter, Georgian Math. J. 21, 187-197, 2014.
[14] S. Heidarkhani and D. Motreanu, Multiplicity results for a two-point boundary value
problem, PanAmer. Math. J. 19, 69-78, 2009.
[15] B. Ricceri, A general variational principle and some of its applications, J. Comput.
Appl. Math. 113, 401-410, 2000.
[16] S. Shakeri and A. Hadjian, Multiplicity results for a two-point boundary value problem,
J. Appl. Math. Comput. 49, 329-342, 2015.
[17] G. Talenti, Some inequalities of Sobolev type on two-dimensional spheres, in: W.
Walter (Ed.), General Inequalities 5, in: Internat. Ser. Numer. Math. 80, 401-408,
Birkhäuser, Basel, 1987.
Hadjian, A., & Nieto, J. (2023). Existence results for a Dirichlet boundary value problem through a local minimization principle. Hacettepe Journal of Mathematics and Statistics, 52(1), 126-135. https://doi.org/10.15672/hujms.988476
AMA
Hadjian A, Nieto J. Existence results for a Dirichlet boundary value problem through a local minimization principle. Hacettepe Journal of Mathematics and Statistics. February 2023;52(1):126-135. doi:10.15672/hujms.988476
Chicago
Hadjian, Armin, and Juan Nieto. “Existence Results for a Dirichlet Boundary Value Problem through a Local Minimization Principle”. Hacettepe Journal of Mathematics and Statistics 52, no. 1 (February 2023): 126-35. https://doi.org/10.15672/hujms.988476.
EndNote
Hadjian A, Nieto J (February 1, 2023) Existence results for a Dirichlet boundary value problem through a local minimization principle. Hacettepe Journal of Mathematics and Statistics 52 1 126–135.
IEEE
A. Hadjian and J. Nieto, “Existence results for a Dirichlet boundary value problem through a local minimization principle”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 1, pp. 126–135, 2023, doi: 10.15672/hujms.988476.
ISNAD
Hadjian, Armin - Nieto, Juan. “Existence Results for a Dirichlet Boundary Value Problem through a Local Minimization Principle”. Hacettepe Journal of Mathematics and Statistics 52/1 (February 2023), 126-135. https://doi.org/10.15672/hujms.988476.
JAMA
Hadjian A, Nieto J. Existence results for a Dirichlet boundary value problem through a local minimization principle. Hacettepe Journal of Mathematics and Statistics. 2023;52:126–135.
MLA
Hadjian, Armin and Juan Nieto. “Existence Results for a Dirichlet Boundary Value Problem through a Local Minimization Principle”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 1, 2023, pp. 126-35, doi:10.15672/hujms.988476.
Vancouver
Hadjian A, Nieto J. Existence results for a Dirichlet boundary value problem through a local minimization principle. Hacettepe Journal of Mathematics and Statistics. 2023;52(1):126-35.