Year 2018,
Volume: 47 Issue: 3, 579 - 587, 01.06.2018
Shyamal Kumar Hui
,
Debabrata Chakraborty
References
- Ashoka, S. R., Bagewadi, C. S. and Ingalahalli, G., Certain results on Ricci solitons in -
Sasakian manifolds, Hindawi Publ. Corporation, Geometry, Vol. 2013, Article ID 573925,
4 pages.
- Ashoka, S. R., Bagewadi, C. S. and Ingalahalli, G., A geometry on Ricci solitons in (LCS)n-
manifolds, Di. Geom.-Dynamical Systems, 16 (2014), 5062.
- Bagewadi, C. S. and Ingalahalli, G., Ricci solitons in Lorentzian -Sasakian manifolds,
Acta Math. Acad. Paeda. Nyire., 28 (2012), 5968.
- Bejan, C. L. and Crasmareanu, M., Ricci solitons in manifolds with quasi constant curva-
ture, Publ. Math. Debrecen, 78 (2011), 235243.
- Blaga, A. M., $\eta$-Ricci solitons on para-kenmotsu manifolds, Balkan J. Geom. Appl., 20
(2015), 113.
- Blair, D. E., Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509,
Springer-Verlag, 1976.
- Calin, C. and Crasmareanu, M., From the Eisenhart problem to Ricci solitons in f-
Kenmotsu manifolds, Bull. Malays. Math. Sci. Soc. (2), 33 (2010), 361368.
- Chandra, S., Hui, S. K. and Shaikh, A. A., Second order parallel tensors and Ricci solitons
on (LCS)n-manifolds, Commun. Korean Math. Soc., 30 (2015), 123130.
- Chen, B. Y. and Deshmukh, S., Geometry of compact shrinking Ricci solitons, Balkan J.
Geom. Appl., 19 (2014), 1321.
- Deshmukh, S., Al-Sodais, H. and Alodan, H., A note on Ricci solitons, Balkan J. Geom.
Appl.,16 (2011), 4855.
- Deszcz, R., On Ricci-pseudosymmetric warped products, Demonstratio Math., 22 (1989),
10531065.
- Deszcz R., On pseudosymmetric spaces, Bull. Soc. Math. Belg. Ser. A, 44(1) (1992), 134.
- Hamilton, R. S., Three-manifolds with positive Ricci curvature, J. Di. Geom., 17 (1982),
255306.
- Hamilton, R. S., The Ricci ow on surfaces, Mathematics and general relativity, Contemp.
Math., 71, American Math. Soc., 1988, 237262.
- Hui, S. K. and Chakraborty, D., Some types of Ricci solitons on (LCS)n-manifolds, J.
Math. Sci. Advances and Applications, 37 (2016), 117.
- Hui, S. K. and Chakraborty, D., Generalized Sasakian-space-forms and Ricci almost solitons
with a conformal killing vector eld, New Trends in Math. Sci., 4 (2016), 263269.
- Hui, S. K. and Lemence, R. S., Ricci pseudosymmetric generalized quasi-Einstein manifolds,
SUT J. Math., 51 (2015), 6785.
- Hui, S. K., Lemence, R. S. and Chakraborty, D., Ricci solitons on three dimensional gen-
eralized Sasakian-space-forms, Tensor Society, N. S., 76 (2015), 75-83.
- Ingalahalli, G. and Bagewadi, C. S., Ricci solitons in $\alpha$-Sasakian manifolds,Hindawi Pub-
lishing Corporation, ISRN Geometry, Vol. 2012, Article ID 421384, 13 pages.
- Jahanara, B., Haesen, S., Senturk, Z. and Verstraelen, L., On the parallel transport of the
Ricci curvatures, J. Geom. Phys., 57 (2007), 17711777.
- Kenmotsu, K., A class of almost contact Riemannian manifolds, Tohoku Math. J., 24
(1972), 93103.
- Nagaraja, H. G. and Premalatha, C. R., Ricci solitons in Kenmotsu manifolds, J. Math.
Analysis, 3 (2012), 1824.
- Oubi~na, J. A., New classes of almost contact metric structures, Publ. Math. Debrecen, 32
(1985), 187193.
- Perelman, G., The entropy formula for the Ricci ow and its geometric applications,
http://arXiv.org/abs/math/0211159, 2002, 139.
- Perelman, G., Ricci ow with surgery on three manifolds,
http://arXiv.org/abs/math/0303109, 2003, 122.
- Pigola, S., Rigoli, M., Rimoldi, M. and Setti, A. G., Ricci almost solitons, Ann. Sc. Norm.
Super. Pisa Cl. Sci, 10 (2011), 757799.
- Shaikh, A. A. and Hui, S. K., On some classes of generalized quasi-Einstein manifolds,
Commun. Korean Math. Soc., 24(3) (2009), 415424.
- Shaikh, A. A. and Hui, S. K., On locally $\phi$-symmetric $\beta$-kenmotsu manifolds, Extracta
Mathematicae, 24(3) (2009), 301316.
- Shaikh, A. A. and Hui, S. K., On extended generalized $\phi$-recurrent $\beta$-Kenmotsu Manifolds,
Publ. de l'Institut Math. (Beograd), 89(103) (2011), 7788.
- Sharma, R., Certain results on k-contact and (k,\mu)-contact manifolds, J. of Geom., 89
(2008), 138147.
- Tripathi, M. M., Ricci solitons in contact metric manifolds, arxiv:0801.4221 [Math.DG]
(2008).
- Yano, K., Concircular geometry, I, Proc. Imp. Acad. Tokyo, 16 (1940), 195200.
Ricci almost solitons on Concircular Ricci pseudosymmetric $\beta$-Kenmotsu manifolds
Year 2018,
Volume: 47 Issue: 3, 579 - 587, 01.06.2018
Shyamal Kumar Hui
,
Debabrata Chakraborty
Abstract
The object of the present paper is to study concircular Ricci pseudosymmetric $\beta$-Kenmotsu manifolds whose metric is Ricci almost soliton. We found the conditions when Ricci almost soliton on concircular Ricci pseudosymmetric $\beta$-Kenmotsu manifold to be shrinking, steady and expanding respectively. We also construct an example of concircular Ricci pseudosymmetric $\beta$-Kenmotsu manifold whose metric is Ricci almost soliton.
References
- Ashoka, S. R., Bagewadi, C. S. and Ingalahalli, G., Certain results on Ricci solitons in -
Sasakian manifolds, Hindawi Publ. Corporation, Geometry, Vol. 2013, Article ID 573925,
4 pages.
- Ashoka, S. R., Bagewadi, C. S. and Ingalahalli, G., A geometry on Ricci solitons in (LCS)n-
manifolds, Di. Geom.-Dynamical Systems, 16 (2014), 5062.
- Bagewadi, C. S. and Ingalahalli, G., Ricci solitons in Lorentzian -Sasakian manifolds,
Acta Math. Acad. Paeda. Nyire., 28 (2012), 5968.
- Bejan, C. L. and Crasmareanu, M., Ricci solitons in manifolds with quasi constant curva-
ture, Publ. Math. Debrecen, 78 (2011), 235243.
- Blaga, A. M., $\eta$-Ricci solitons on para-kenmotsu manifolds, Balkan J. Geom. Appl., 20
(2015), 113.
- Blair, D. E., Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509,
Springer-Verlag, 1976.
- Calin, C. and Crasmareanu, M., From the Eisenhart problem to Ricci solitons in f-
Kenmotsu manifolds, Bull. Malays. Math. Sci. Soc. (2), 33 (2010), 361368.
- Chandra, S., Hui, S. K. and Shaikh, A. A., Second order parallel tensors and Ricci solitons
on (LCS)n-manifolds, Commun. Korean Math. Soc., 30 (2015), 123130.
- Chen, B. Y. and Deshmukh, S., Geometry of compact shrinking Ricci solitons, Balkan J.
Geom. Appl., 19 (2014), 1321.
- Deshmukh, S., Al-Sodais, H. and Alodan, H., A note on Ricci solitons, Balkan J. Geom.
Appl.,16 (2011), 4855.
- Deszcz, R., On Ricci-pseudosymmetric warped products, Demonstratio Math., 22 (1989),
10531065.
- Deszcz R., On pseudosymmetric spaces, Bull. Soc. Math. Belg. Ser. A, 44(1) (1992), 134.
- Hamilton, R. S., Three-manifolds with positive Ricci curvature, J. Di. Geom., 17 (1982),
255306.
- Hamilton, R. S., The Ricci ow on surfaces, Mathematics and general relativity, Contemp.
Math., 71, American Math. Soc., 1988, 237262.
- Hui, S. K. and Chakraborty, D., Some types of Ricci solitons on (LCS)n-manifolds, J.
Math. Sci. Advances and Applications, 37 (2016), 117.
- Hui, S. K. and Chakraborty, D., Generalized Sasakian-space-forms and Ricci almost solitons
with a conformal killing vector eld, New Trends in Math. Sci., 4 (2016), 263269.
- Hui, S. K. and Lemence, R. S., Ricci pseudosymmetric generalized quasi-Einstein manifolds,
SUT J. Math., 51 (2015), 6785.
- Hui, S. K., Lemence, R. S. and Chakraborty, D., Ricci solitons on three dimensional gen-
eralized Sasakian-space-forms, Tensor Society, N. S., 76 (2015), 75-83.
- Ingalahalli, G. and Bagewadi, C. S., Ricci solitons in $\alpha$-Sasakian manifolds,Hindawi Pub-
lishing Corporation, ISRN Geometry, Vol. 2012, Article ID 421384, 13 pages.
- Jahanara, B., Haesen, S., Senturk, Z. and Verstraelen, L., On the parallel transport of the
Ricci curvatures, J. Geom. Phys., 57 (2007), 17711777.
- Kenmotsu, K., A class of almost contact Riemannian manifolds, Tohoku Math. J., 24
(1972), 93103.
- Nagaraja, H. G. and Premalatha, C. R., Ricci solitons in Kenmotsu manifolds, J. Math.
Analysis, 3 (2012), 1824.
- Oubi~na, J. A., New classes of almost contact metric structures, Publ. Math. Debrecen, 32
(1985), 187193.
- Perelman, G., The entropy formula for the Ricci ow and its geometric applications,
http://arXiv.org/abs/math/0211159, 2002, 139.
- Perelman, G., Ricci ow with surgery on three manifolds,
http://arXiv.org/abs/math/0303109, 2003, 122.
- Pigola, S., Rigoli, M., Rimoldi, M. and Setti, A. G., Ricci almost solitons, Ann. Sc. Norm.
Super. Pisa Cl. Sci, 10 (2011), 757799.
- Shaikh, A. A. and Hui, S. K., On some classes of generalized quasi-Einstein manifolds,
Commun. Korean Math. Soc., 24(3) (2009), 415424.
- Shaikh, A. A. and Hui, S. K., On locally $\phi$-symmetric $\beta$-kenmotsu manifolds, Extracta
Mathematicae, 24(3) (2009), 301316.
- Shaikh, A. A. and Hui, S. K., On extended generalized $\phi$-recurrent $\beta$-Kenmotsu Manifolds,
Publ. de l'Institut Math. (Beograd), 89(103) (2011), 7788.
- Sharma, R., Certain results on k-contact and (k,\mu)-contact manifolds, J. of Geom., 89
(2008), 138147.
- Tripathi, M. M., Ricci solitons in contact metric manifolds, arxiv:0801.4221 [Math.DG]
(2008).
- Yano, K., Concircular geometry, I, Proc. Imp. Acad. Tokyo, 16 (1940), 195200.