Research Article
BibTex RIS Cite
Year 2018, Volume: 47 Issue: 2, 317 - 329, 01.04.2018

Abstract

References

  • Abyzov, A. N. and Tuganbaev A. A. Modules in which sums or intersections of two direct summands are direct summands, Fundam. Prikl. Mat. 19, 3-11, 2014.
  • Abyzov A. N. and Nhan T. H. N. CS-Rickart Modules, Lobachevskii Journal of Mathematics, 35, 317-326, 2014.
  • Alkan, M. and Harmanci, A. On Summand Sum and Summand Intersection Property of Modules, Turkish J. Math, 26, 131-147, 2002.
  • Amin, I. Ibrahim, Y. and Yousif, M. F. C3-modules, Algebra Colloq. 22, 655-670, 2015.
  • Anderson, F. W. and Fuller, K. R. Rings and Categories of Modules, Springer-Verlag, New York, 1974.
  • Camillo, V. Ibrahim, Y. Yousif, M. and Zhou, Y. Simple-direct-injective modules, J. Algebra 420, 39-53, 2014.
  • Dung, N. V. Huynh, D. V. Smith, P. F. and Wisbauer, R. Extending modules, Pitman Research Notes in Math. 313, Longman, Harlow, New York, 1994.
  • Faith, C. Algebra II. Ring Theory, Springer-Verlag, New York, 1967.
  • Fuller, K. R. On indecomposable injectives over artinian rings, Pacic J. Math 29, 115-135, 1968.
  • Garcia, J. L. Properties of Direct Summands of Modules, Comm. Algebra, 17, 73-92, 1989.
  • Hamdouni, A. Harmanci, A. and Ç. Özcan, A. Characterization of modules and rings by the summand intersection property and the summand sum property, JP Jour.Algebra, Number Theory & Appl. 5, 469-490, 2005.
  • Hausen, J. Modules with the Summand Intersection Property, Comm. Algebra 17, 135-148, 1989.
  • Ibrahim, Y. Kossan, M. T. Quynh, T.C. and Yousif, M. Simple-direct-projective modules, Comm. Algebra 44, 5163-5178, 2016
  • Kaplansky, I. Innite Abelian Groups, Univ. of Michigan Press, Ann Arbor, 1969.
  • Keskin Tutuncu, D. Mohamed, S.H. and Orhan Ertas, N. Mixed injective modules, Glasg. Math. J. 52, 111-120, 2010.
  • Mohammed, S. H. and Müller, B. J. Continous and Discrete Modules, London Math. Soc. LN 147: Cambridge Univ. Press., 1990.
  • Quynh, T. C. Kosan, M. T. and Thuyet, L. V. On (semi)regular morphisms, Comm. Algebra 41, 2933-2947, 2013.
  • Wilson, G. V. Modules with the Direct Summand Intersection Property, Comm. Algebra 14, 21-38, 1986.
  • Wisbauer, R. Foundations of Module and Ring Theory, Gordon and Breach. Reading, 1991.
  • Yousif, M.F. Amin, I. and Ibrahim, Y.D3-modules. Commun. Algebra 42, 578-592, 2014.

On classes of C3 and D3 modules

Year 2018, Volume: 47 Issue: 2, 317 - 329, 01.04.2018

Abstract

This paper aims to study the notions of $\mathcal{A}$-C3 and $\mathcal{A}$-D3 modules for some class $\mathcal{A}$ of right modules. Several characterizations of these modules are provided and used to describe some well-known classes of rings and modules. For example, a regular right $R$-module $F$ is a $V$-module if and only if every $F$-cyclic module is an $\mathcal{A}$-C3 module, where $\mathcal{A}$ is the class of all simple right $R$-modules. Moreover, let $R$ be a right artinian ring and $\mathcal{A}$, a class of right $R$-modules with a local ring of endomorphisms, containing all simple right $R$-modules and closed under isomorphisms. If all right $R$-modules are $\mathcal{A}$-injective, then $R$ is a serial artinian ring with $J^2(R)=0$ if and only if every $\mathcal{A}$-C3 right $R$-module is quasi-injective, if and only if every $\mathcal{A}$-C3 right $R$-module is C3.

References

  • Abyzov, A. N. and Tuganbaev A. A. Modules in which sums or intersections of two direct summands are direct summands, Fundam. Prikl. Mat. 19, 3-11, 2014.
  • Abyzov A. N. and Nhan T. H. N. CS-Rickart Modules, Lobachevskii Journal of Mathematics, 35, 317-326, 2014.
  • Alkan, M. and Harmanci, A. On Summand Sum and Summand Intersection Property of Modules, Turkish J. Math, 26, 131-147, 2002.
  • Amin, I. Ibrahim, Y. and Yousif, M. F. C3-modules, Algebra Colloq. 22, 655-670, 2015.
  • Anderson, F. W. and Fuller, K. R. Rings and Categories of Modules, Springer-Verlag, New York, 1974.
  • Camillo, V. Ibrahim, Y. Yousif, M. and Zhou, Y. Simple-direct-injective modules, J. Algebra 420, 39-53, 2014.
  • Dung, N. V. Huynh, D. V. Smith, P. F. and Wisbauer, R. Extending modules, Pitman Research Notes in Math. 313, Longman, Harlow, New York, 1994.
  • Faith, C. Algebra II. Ring Theory, Springer-Verlag, New York, 1967.
  • Fuller, K. R. On indecomposable injectives over artinian rings, Pacic J. Math 29, 115-135, 1968.
  • Garcia, J. L. Properties of Direct Summands of Modules, Comm. Algebra, 17, 73-92, 1989.
  • Hamdouni, A. Harmanci, A. and Ç. Özcan, A. Characterization of modules and rings by the summand intersection property and the summand sum property, JP Jour.Algebra, Number Theory & Appl. 5, 469-490, 2005.
  • Hausen, J. Modules with the Summand Intersection Property, Comm. Algebra 17, 135-148, 1989.
  • Ibrahim, Y. Kossan, M. T. Quynh, T.C. and Yousif, M. Simple-direct-projective modules, Comm. Algebra 44, 5163-5178, 2016
  • Kaplansky, I. Innite Abelian Groups, Univ. of Michigan Press, Ann Arbor, 1969.
  • Keskin Tutuncu, D. Mohamed, S.H. and Orhan Ertas, N. Mixed injective modules, Glasg. Math. J. 52, 111-120, 2010.
  • Mohammed, S. H. and Müller, B. J. Continous and Discrete Modules, London Math. Soc. LN 147: Cambridge Univ. Press., 1990.
  • Quynh, T. C. Kosan, M. T. and Thuyet, L. V. On (semi)regular morphisms, Comm. Algebra 41, 2933-2947, 2013.
  • Wilson, G. V. Modules with the Direct Summand Intersection Property, Comm. Algebra 14, 21-38, 1986.
  • Wisbauer, R. Foundations of Module and Ring Theory, Gordon and Breach. Reading, 1991.
  • Yousif, M.F. Amin, I. and Ibrahim, Y.D3-modules. Commun. Algebra 42, 578-592, 2014.
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Abyzov Adel Nailevich This is me

Truong Cong Quynh This is me

Tran Hoai Ngoc Nhan

Publication Date April 1, 2018
Published in Issue Year 2018 Volume: 47 Issue: 2

Cite

APA Nailevich, A. A., Quynh, T. C., & Nhan, T. H. N. (2018). On classes of C3 and D3 modules. Hacettepe Journal of Mathematics and Statistics, 47(2), 317-329.
AMA Nailevich AA, Quynh TC, Nhan THN. On classes of C3 and D3 modules. Hacettepe Journal of Mathematics and Statistics. April 2018;47(2):317-329.
Chicago Nailevich, Abyzov Adel, Truong Cong Quynh, and Tran Hoai Ngoc Nhan. “On Classes of C3 and D3 Modules”. Hacettepe Journal of Mathematics and Statistics 47, no. 2 (April 2018): 317-29.
EndNote Nailevich AA, Quynh TC, Nhan THN (April 1, 2018) On classes of C3 and D3 modules. Hacettepe Journal of Mathematics and Statistics 47 2 317–329.
IEEE A. A. Nailevich, T. C. Quynh, and T. H. N. Nhan, “On classes of C3 and D3 modules”, Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 2, pp. 317–329, 2018.
ISNAD Nailevich, Abyzov Adel et al. “On Classes of C3 and D3 Modules”. Hacettepe Journal of Mathematics and Statistics 47/2 (April 2018), 317-329.
JAMA Nailevich AA, Quynh TC, Nhan THN. On classes of C3 and D3 modules. Hacettepe Journal of Mathematics and Statistics. 2018;47:317–329.
MLA Nailevich, Abyzov Adel et al. “On Classes of C3 and D3 Modules”. Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 2, 2018, pp. 317-29.
Vancouver Nailevich AA, Quynh TC, Nhan THN. On classes of C3 and D3 modules. Hacettepe Journal of Mathematics and Statistics. 2018;47(2):317-29.