Year 2018,
Volume: 47 Issue: 2, 471 - 511, 01.04.2018
Mazhar Yaqub
Javid Shabbir
References
- Ahmed, M. S. and Abu-Dayyeh, W. (2001). Estimation of nite population dis-
tribution function using multivariate auxiliary information. Statistics in Transition,
3:501507.
- Chambers, R., Dunstan, A. H., and Hall, P. (1992). Properties of estimators of nite
population distribution function. Biometrika, 79(3):577582.
- Chambers, R. and Dunstan, R. (1986). Estimating distribution function from survey
data. Biometrika, 72:597604.
- Diana, G. and Perri, P. F. (1953). On probability mechanism to attain an economic
balance between the resultant error of response and bias of non-response. Journal of
the American Statistical Association, 48(264):743772.
- Diana, G. and Perri, P. F. (2012). A class of estimators in two-phase sampling with
sub-sampling the non-respondents. Applied Mathematics and Computation, 40:139148.
- Dorfman, A. H. (1993). A comparison of design-based and model-based estimators fo
the nite population distribution function. Australian Journal of Statistics, 35:2941.
- Dunkelberg, W. C. and Goerge, S. D. (1973). Nonresponse bias and call backs in
sample surveys. Journal of Marketing Research, 10(2):160168.
- El-Badry, M. A. (1956). A sampling procedure for mailed questionnaire. Journal of
the American Statistical Association, 51(274):209227.
- Garcia, M. R. and Cebrian, A. A. (1998). Quantile interval estimation in nite
population using a multivariate ratio estimator. Metrika, 47:203213.
- Gross, S. T. (1980). Median estimation in sample surveys. American Statistical
Association, pages 181184.
- Hansen, M. H. and Hurwitz, W. N. (1946). The problem of non response in sample
surveys. Journal of the American Statistical Association, 41:517529.
- Hansen, M. H., Hurwitz, W. N., Marks, E. S., and Mauldin, P. K. (1951). Response
errors in surveys. Journal of the American Statistical Association, 46(254):147190.
- John, A. C. and Robert, N. F. (1947). Controlling bias in mail questionnaires.
Journal of the American Statistical Association, 42(240):497511.
- Khare, B. B. and Sinha, R. R. (2007). Estimation of ratio of the two population
means using multi-auxiliary characters in the presence of non-response. Narosa Pub-
lishing House, New Delhi, India, 10(3):314.
- Khare, B. B. and Sinha, R. R. (2009). On class of estimators for population mean
using multi-auxiliary characters in the presence of non-response. Applied Mathematics
and Computation, 10(3):4556.
- Khare, B. B. and Sinha, R. R. (2011). Estimation of population mean using multi-
auxiliary characters with subsampling the nonrespondents. Statistics in Transition,
12(1):314.
- Khare, B. B. and Srivastava, S. (1993). Estimation of population mean using aux-
iliary characters in the presence of non-response. National Academy Science letters,
India, 16(3):111114.
- Khare, B. B. and Srivastava, S. (1995). Study of conventional and alternative two-
phase sampling ratio, product and regression estimators in the presence of non-response.
Proceeding of the National Academy of Science, India, 16A(II):195203.
- Khare, B. B. and Srivastava, S. (1997). Transformed ratio type estimators for the
population mean in the presence of non-response. Communication in Statistics-Theory
and Methods, 26(5):17791791.
- Klein, M. (2000). Two altenatives to the schewhart X
control chart. Journal of
Quality Technology, 32(4):427431.
- Kuk, A. Y. C. (1998). Estimating of distribution functions and medians under
sampling with unequal probabilities. Biometrika, 75(1):97103.
- Kuk, A. Y. C. and Mak, T. k. (1989). Median estimation in presence of auxiliary
information. Journal of the Royal Statistical Society, 51:261269.
- Kuk, Y. C. and Mak, T. k. (1993). A new method for estimating nite-population
quantiles using auxiliary information. The Canadian Journal of Statistics, 21(1):2938.
- Okafor, F. C. and Lee, H. (2000). Double sampling for ratio and regression estimation
with sub-sampling the non-respondents. Survey Methodology, 26(2):183188.
- Olkin, I. (1958). Multivariate ratio estimation for nite populations. Boimetrika,
45:154165.
- Politz, A. and Simmons, W. (1949). An attempt to get the " not at homes" into the
sample without callbacks. Journal of the American Statistical Association, 44(245):916.
- Rao, J. N. K., Kovar, J. G., and Mental, H. J. (1990). On estimating distribu-
tion functions and quantiles from survey data using auxiliary information. Biometrika,
77(2):365375.
- Rao, P. S. R. S. (1986). Ratio estimation with sub sampling of non-respondents.
Survey Methodology, 12:217230.
- Rueda, M. and Arcos, A. (2004). Improving ratio-type quantile estimates in a nite
population. Statistical Papers, 45:231248.
- Rueda, M. M., Arcos, A., and Martinez, M. D. (2003). Dierence estimators of
quantiles in nite populations. Biometrika, 12(2):481496.
- Rueda, M. M., Arcos, A., Martinez, M. D., and Roman, Y. (2004). Some improved
estimators of nite population quantile using auxiliary information in sample survey.
Computational Statistics and data analysis, 45:825848.
- Sarndal, C. E., Swensson, B., and Wretman, J. (1992). Model Assisted Survey
Sampling. Springer Verlag, New York.
- Shabbir, J. and Nasir, S. (2013). On estimating the nite population mean using
two auxiliary variables in two phase sampling in the presence of non response. Commu-
nication in Statistics-Theory and Methods, 42:41274145.
- Singh, H. P. and Kumar, S. (2009). A general procedure of estimating the population
mean in the presence of non-response under double sampling using auxiliary information.
SORT, 33(1):7184.
- Singh, H. P. and Kumar, S. (2010a). Estimation of mean in presence of non-response
using two phase sampling scheme. Statistical Papers, 51:559582.
- Singh, H. P. and Kumar, S. (2010b). Improved estimation of population mean under
two phase sampling with sub-sampling of the non-respondents. Journal of Statistical
Planning and Inference, DOI:10.1016/.jspi.
- Singh, H. P., Sarjinder, S., and Kozak, M. (2008). A family of estimators of nite-
population distribution function using auxiliary information. Accta Applicandae Math-
ematicae, 104:115130.
- Singh, S. (2003). Advanced sampling theory with applications.
- Singh, S. and Joarder, A. H. (2002). Estimation of the distribution function and
median in two phase sampling. Pakistan Journal of Statistics, 18(2):301319.
- Tabasum, R. and Khan, I. A. (2006). Double sampling for ratio estimator for the
population mean in the presence of non-response. Assam Statistical Review, 20:7383.
- Wang, S. and Alan, H. D. (1996). A new estimator for the nite population distri-
bution function. Journal of the American Statistical Association, 47:635646.
- Woodru, R. S. (1952). Condence interval for medians and other position measures.
Biometrika, 83(3):639652.
Estimation of population distribution function in the presence of non-response
Year 2018,
Volume: 47 Issue: 2, 471 - 511, 01.04.2018
Mazhar Yaqub
Javid Shabbir
Abstract
This article addresses the problem of estimating the population distribution function in the presence of non-response. We suggest a general class of estimators for estimating the cumulative distribution function using the auxiliary information. Expressions for bias and mean squared error of considered estimators are derived up to the first order of approximation. The performance of estimators are compared theoretically and numerically. A numerical study is carried out to evaluate the performances of estimators.
References
- Ahmed, M. S. and Abu-Dayyeh, W. (2001). Estimation of nite population dis-
tribution function using multivariate auxiliary information. Statistics in Transition,
3:501507.
- Chambers, R., Dunstan, A. H., and Hall, P. (1992). Properties of estimators of nite
population distribution function. Biometrika, 79(3):577582.
- Chambers, R. and Dunstan, R. (1986). Estimating distribution function from survey
data. Biometrika, 72:597604.
- Diana, G. and Perri, P. F. (1953). On probability mechanism to attain an economic
balance between the resultant error of response and bias of non-response. Journal of
the American Statistical Association, 48(264):743772.
- Diana, G. and Perri, P. F. (2012). A class of estimators in two-phase sampling with
sub-sampling the non-respondents. Applied Mathematics and Computation, 40:139148.
- Dorfman, A. H. (1993). A comparison of design-based and model-based estimators fo
the nite population distribution function. Australian Journal of Statistics, 35:2941.
- Dunkelberg, W. C. and Goerge, S. D. (1973). Nonresponse bias and call backs in
sample surveys. Journal of Marketing Research, 10(2):160168.
- El-Badry, M. A. (1956). A sampling procedure for mailed questionnaire. Journal of
the American Statistical Association, 51(274):209227.
- Garcia, M. R. and Cebrian, A. A. (1998). Quantile interval estimation in nite
population using a multivariate ratio estimator. Metrika, 47:203213.
- Gross, S. T. (1980). Median estimation in sample surveys. American Statistical
Association, pages 181184.
- Hansen, M. H. and Hurwitz, W. N. (1946). The problem of non response in sample
surveys. Journal of the American Statistical Association, 41:517529.
- Hansen, M. H., Hurwitz, W. N., Marks, E. S., and Mauldin, P. K. (1951). Response
errors in surveys. Journal of the American Statistical Association, 46(254):147190.
- John, A. C. and Robert, N. F. (1947). Controlling bias in mail questionnaires.
Journal of the American Statistical Association, 42(240):497511.
- Khare, B. B. and Sinha, R. R. (2007). Estimation of ratio of the two population
means using multi-auxiliary characters in the presence of non-response. Narosa Pub-
lishing House, New Delhi, India, 10(3):314.
- Khare, B. B. and Sinha, R. R. (2009). On class of estimators for population mean
using multi-auxiliary characters in the presence of non-response. Applied Mathematics
and Computation, 10(3):4556.
- Khare, B. B. and Sinha, R. R. (2011). Estimation of population mean using multi-
auxiliary characters with subsampling the nonrespondents. Statistics in Transition,
12(1):314.
- Khare, B. B. and Srivastava, S. (1993). Estimation of population mean using aux-
iliary characters in the presence of non-response. National Academy Science letters,
India, 16(3):111114.
- Khare, B. B. and Srivastava, S. (1995). Study of conventional and alternative two-
phase sampling ratio, product and regression estimators in the presence of non-response.
Proceeding of the National Academy of Science, India, 16A(II):195203.
- Khare, B. B. and Srivastava, S. (1997). Transformed ratio type estimators for the
population mean in the presence of non-response. Communication in Statistics-Theory
and Methods, 26(5):17791791.
- Klein, M. (2000). Two altenatives to the schewhart X
control chart. Journal of
Quality Technology, 32(4):427431.
- Kuk, A. Y. C. (1998). Estimating of distribution functions and medians under
sampling with unequal probabilities. Biometrika, 75(1):97103.
- Kuk, A. Y. C. and Mak, T. k. (1989). Median estimation in presence of auxiliary
information. Journal of the Royal Statistical Society, 51:261269.
- Kuk, Y. C. and Mak, T. k. (1993). A new method for estimating nite-population
quantiles using auxiliary information. The Canadian Journal of Statistics, 21(1):2938.
- Okafor, F. C. and Lee, H. (2000). Double sampling for ratio and regression estimation
with sub-sampling the non-respondents. Survey Methodology, 26(2):183188.
- Olkin, I. (1958). Multivariate ratio estimation for nite populations. Boimetrika,
45:154165.
- Politz, A. and Simmons, W. (1949). An attempt to get the " not at homes" into the
sample without callbacks. Journal of the American Statistical Association, 44(245):916.
- Rao, J. N. K., Kovar, J. G., and Mental, H. J. (1990). On estimating distribu-
tion functions and quantiles from survey data using auxiliary information. Biometrika,
77(2):365375.
- Rao, P. S. R. S. (1986). Ratio estimation with sub sampling of non-respondents.
Survey Methodology, 12:217230.
- Rueda, M. and Arcos, A. (2004). Improving ratio-type quantile estimates in a nite
population. Statistical Papers, 45:231248.
- Rueda, M. M., Arcos, A., and Martinez, M. D. (2003). Dierence estimators of
quantiles in nite populations. Biometrika, 12(2):481496.
- Rueda, M. M., Arcos, A., Martinez, M. D., and Roman, Y. (2004). Some improved
estimators of nite population quantile using auxiliary information in sample survey.
Computational Statistics and data analysis, 45:825848.
- Sarndal, C. E., Swensson, B., and Wretman, J. (1992). Model Assisted Survey
Sampling. Springer Verlag, New York.
- Shabbir, J. and Nasir, S. (2013). On estimating the nite population mean using
two auxiliary variables in two phase sampling in the presence of non response. Commu-
nication in Statistics-Theory and Methods, 42:41274145.
- Singh, H. P. and Kumar, S. (2009). A general procedure of estimating the population
mean in the presence of non-response under double sampling using auxiliary information.
SORT, 33(1):7184.
- Singh, H. P. and Kumar, S. (2010a). Estimation of mean in presence of non-response
using two phase sampling scheme. Statistical Papers, 51:559582.
- Singh, H. P. and Kumar, S. (2010b). Improved estimation of population mean under
two phase sampling with sub-sampling of the non-respondents. Journal of Statistical
Planning and Inference, DOI:10.1016/.jspi.
- Singh, H. P., Sarjinder, S., and Kozak, M. (2008). A family of estimators of nite-
population distribution function using auxiliary information. Accta Applicandae Math-
ematicae, 104:115130.
- Singh, S. (2003). Advanced sampling theory with applications.
- Singh, S. and Joarder, A. H. (2002). Estimation of the distribution function and
median in two phase sampling. Pakistan Journal of Statistics, 18(2):301319.
- Tabasum, R. and Khan, I. A. (2006). Double sampling for ratio estimator for the
population mean in the presence of non-response. Assam Statistical Review, 20:7383.
- Wang, S. and Alan, H. D. (1996). A new estimator for the nite population distri-
bution function. Journal of the American Statistical Association, 47:635646.
- Woodru, R. S. (1952). Condence interval for medians and other position measures.
Biometrika, 83(3):639652.