Research Article
BibTex RIS Cite
Year 2018, Volume: 47 Issue: 2, 471 - 511, 01.04.2018

Abstract

References

  • Ahmed, M. S. and Abu-Dayyeh, W. (2001). Estimation of nite population dis- tribution function using multivariate auxiliary information. Statistics in Transition, 3:501507.
  • Chambers, R., Dunstan, A. H., and Hall, P. (1992). Properties of estimators of nite population distribution function. Biometrika, 79(3):577582.
  • Chambers, R. and Dunstan, R. (1986). Estimating distribution function from survey data. Biometrika, 72:597604.
  • Diana, G. and Perri, P. F. (1953). On probability mechanism to attain an economic balance between the resultant error of response and bias of non-response. Journal of the American Statistical Association, 48(264):743772.
  • Diana, G. and Perri, P. F. (2012). A class of estimators in two-phase sampling with sub-sampling the non-respondents. Applied Mathematics and Computation, 40:139148.
  • Dorfman, A. H. (1993). A comparison of design-based and model-based estimators fo the nite population distribution function. Australian Journal of Statistics, 35:2941.
  • Dunkelberg, W. C. and Goerge, S. D. (1973). Nonresponse bias and call backs in sample surveys. Journal of Marketing Research, 10(2):160168.
  • El-Badry, M. A. (1956). A sampling procedure for mailed questionnaire. Journal of the American Statistical Association, 51(274):209227.
  • Garcia, M. R. and Cebrian, A. A. (1998). Quantile interval estimation in nite population using a multivariate ratio estimator. Metrika, 47:203213.
  • Gross, S. T. (1980). Median estimation in sample surveys. American Statistical Association, pages 181184.
  • Hansen, M. H. and Hurwitz, W. N. (1946). The problem of non response in sample surveys. Journal of the American Statistical Association, 41:517529.
  • Hansen, M. H., Hurwitz, W. N., Marks, E. S., and Mauldin, P. K. (1951). Response errors in surveys. Journal of the American Statistical Association, 46(254):147190.
  • John, A. C. and Robert, N. F. (1947). Controlling bias in mail questionnaires. Journal of the American Statistical Association, 42(240):497511.
  • Khare, B. B. and Sinha, R. R. (2007). Estimation of ratio of the two population means using multi-auxiliary characters in the presence of non-response. Narosa Pub- lishing House, New Delhi, India, 10(3):314.
  • Khare, B. B. and Sinha, R. R. (2009). On class of estimators for population mean using multi-auxiliary characters in the presence of non-response. Applied Mathematics and Computation, 10(3):4556.
  • Khare, B. B. and Sinha, R. R. (2011). Estimation of population mean using multi- auxiliary characters with subsampling the nonrespondents. Statistics in Transition, 12(1):314.
  • Khare, B. B. and Srivastava, S. (1993). Estimation of population mean using aux- iliary characters in the presence of non-response. National Academy Science letters, India, 16(3):111114.
  • Khare, B. B. and Srivastava, S. (1995). Study of conventional and alternative two- phase sampling ratio, product and regression estimators in the presence of non-response. Proceeding of the National Academy of Science, India, 16A(II):195203.
  • Khare, B. B. and Srivastava, S. (1997). Transformed ratio type estimators for the population mean in the presence of non-response. Communication in Statistics-Theory and Methods, 26(5):17791791.
  • Klein, M. (2000). Two altenatives to the schewhart X control chart. Journal of Quality Technology, 32(4):427431.
  • Kuk, A. Y. C. (1998). Estimating of distribution functions and medians under sampling with unequal probabilities. Biometrika, 75(1):97103.
  • Kuk, A. Y. C. and Mak, T. k. (1989). Median estimation in presence of auxiliary information. Journal of the Royal Statistical Society, 51:261269.
  • Kuk, Y. C. and Mak, T. k. (1993). A new method for estimating nite-population quantiles using auxiliary information. The Canadian Journal of Statistics, 21(1):2938.
  • Okafor, F. C. and Lee, H. (2000). Double sampling for ratio and regression estimation with sub-sampling the non-respondents. Survey Methodology, 26(2):183188.
  • Olkin, I. (1958). Multivariate ratio estimation for nite populations. Boimetrika, 45:154165.
  • Politz, A. and Simmons, W. (1949). An attempt to get the " not at homes" into the sample without callbacks. Journal of the American Statistical Association, 44(245):916.
  • Rao, J. N. K., Kovar, J. G., and Mental, H. J. (1990). On estimating distribu- tion functions and quantiles from survey data using auxiliary information. Biometrika, 77(2):365375.
  • Rao, P. S. R. S. (1986). Ratio estimation with sub sampling of non-respondents. Survey Methodology, 12:217230.
  • Rueda, M. and Arcos, A. (2004). Improving ratio-type quantile estimates in a nite population. Statistical Papers, 45:231248.
  • Rueda, M. M., Arcos, A., and Martinez, M. D. (2003). Dierence estimators of quantiles in nite populations. Biometrika, 12(2):481496.
  • Rueda, M. M., Arcos, A., Martinez, M. D., and Roman, Y. (2004). Some improved estimators of nite population quantile using auxiliary information in sample survey. Computational Statistics and data analysis, 45:825848.
  • Sarndal, C. E., Swensson, B., and Wretman, J. (1992). Model Assisted Survey Sampling. Springer Verlag, New York.
  • Shabbir, J. and Nasir, S. (2013). On estimating the nite population mean using two auxiliary variables in two phase sampling in the presence of non response. Commu- nication in Statistics-Theory and Methods, 42:41274145.
  • Singh, H. P. and Kumar, S. (2009). A general procedure of estimating the population mean in the presence of non-response under double sampling using auxiliary information. SORT, 33(1):7184.
  • Singh, H. P. and Kumar, S. (2010a). Estimation of mean in presence of non-response using two phase sampling scheme. Statistical Papers, 51:559582.
  • Singh, H. P. and Kumar, S. (2010b). Improved estimation of population mean under two phase sampling with sub-sampling of the non-respondents. Journal of Statistical Planning and Inference, DOI:10.1016/.jspi.
  • Singh, H. P., Sarjinder, S., and Kozak, M. (2008). A family of estimators of nite- population distribution function using auxiliary information. Accta Applicandae Math- ematicae, 104:115130.
  • Singh, S. (2003). Advanced sampling theory with applications.
  • Singh, S. and Joarder, A. H. (2002). Estimation of the distribution function and median in two phase sampling. Pakistan Journal of Statistics, 18(2):301319.
  • Tabasum, R. and Khan, I. A. (2006). Double sampling for ratio estimator for the population mean in the presence of non-response. Assam Statistical Review, 20:7383.
  • Wang, S. and Alan, H. D. (1996). A new estimator for the nite population distri- bution function. Journal of the American Statistical Association, 47:635646.
  • Woodru, R. S. (1952). Condence interval for medians and other position measures. Biometrika, 83(3):639652.

Estimation of population distribution function in the presence of non-response

Year 2018, Volume: 47 Issue: 2, 471 - 511, 01.04.2018

Abstract

This article addresses the problem of estimating the population distribution function in the presence of non-response. We suggest a general class of estimators for estimating the cumulative distribution function using the auxiliary information. Expressions for bias and mean squared error of considered estimators are derived up to the first order of approximation. The performance of estimators are compared theoretically and numerically. A numerical study is carried out to evaluate the performances of estimators.

References

  • Ahmed, M. S. and Abu-Dayyeh, W. (2001). Estimation of nite population dis- tribution function using multivariate auxiliary information. Statistics in Transition, 3:501507.
  • Chambers, R., Dunstan, A. H., and Hall, P. (1992). Properties of estimators of nite population distribution function. Biometrika, 79(3):577582.
  • Chambers, R. and Dunstan, R. (1986). Estimating distribution function from survey data. Biometrika, 72:597604.
  • Diana, G. and Perri, P. F. (1953). On probability mechanism to attain an economic balance between the resultant error of response and bias of non-response. Journal of the American Statistical Association, 48(264):743772.
  • Diana, G. and Perri, P. F. (2012). A class of estimators in two-phase sampling with sub-sampling the non-respondents. Applied Mathematics and Computation, 40:139148.
  • Dorfman, A. H. (1993). A comparison of design-based and model-based estimators fo the nite population distribution function. Australian Journal of Statistics, 35:2941.
  • Dunkelberg, W. C. and Goerge, S. D. (1973). Nonresponse bias and call backs in sample surveys. Journal of Marketing Research, 10(2):160168.
  • El-Badry, M. A. (1956). A sampling procedure for mailed questionnaire. Journal of the American Statistical Association, 51(274):209227.
  • Garcia, M. R. and Cebrian, A. A. (1998). Quantile interval estimation in nite population using a multivariate ratio estimator. Metrika, 47:203213.
  • Gross, S. T. (1980). Median estimation in sample surveys. American Statistical Association, pages 181184.
  • Hansen, M. H. and Hurwitz, W. N. (1946). The problem of non response in sample surveys. Journal of the American Statistical Association, 41:517529.
  • Hansen, M. H., Hurwitz, W. N., Marks, E. S., and Mauldin, P. K. (1951). Response errors in surveys. Journal of the American Statistical Association, 46(254):147190.
  • John, A. C. and Robert, N. F. (1947). Controlling bias in mail questionnaires. Journal of the American Statistical Association, 42(240):497511.
  • Khare, B. B. and Sinha, R. R. (2007). Estimation of ratio of the two population means using multi-auxiliary characters in the presence of non-response. Narosa Pub- lishing House, New Delhi, India, 10(3):314.
  • Khare, B. B. and Sinha, R. R. (2009). On class of estimators for population mean using multi-auxiliary characters in the presence of non-response. Applied Mathematics and Computation, 10(3):4556.
  • Khare, B. B. and Sinha, R. R. (2011). Estimation of population mean using multi- auxiliary characters with subsampling the nonrespondents. Statistics in Transition, 12(1):314.
  • Khare, B. B. and Srivastava, S. (1993). Estimation of population mean using aux- iliary characters in the presence of non-response. National Academy Science letters, India, 16(3):111114.
  • Khare, B. B. and Srivastava, S. (1995). Study of conventional and alternative two- phase sampling ratio, product and regression estimators in the presence of non-response. Proceeding of the National Academy of Science, India, 16A(II):195203.
  • Khare, B. B. and Srivastava, S. (1997). Transformed ratio type estimators for the population mean in the presence of non-response. Communication in Statistics-Theory and Methods, 26(5):17791791.
  • Klein, M. (2000). Two altenatives to the schewhart X control chart. Journal of Quality Technology, 32(4):427431.
  • Kuk, A. Y. C. (1998). Estimating of distribution functions and medians under sampling with unequal probabilities. Biometrika, 75(1):97103.
  • Kuk, A. Y. C. and Mak, T. k. (1989). Median estimation in presence of auxiliary information. Journal of the Royal Statistical Society, 51:261269.
  • Kuk, Y. C. and Mak, T. k. (1993). A new method for estimating nite-population quantiles using auxiliary information. The Canadian Journal of Statistics, 21(1):2938.
  • Okafor, F. C. and Lee, H. (2000). Double sampling for ratio and regression estimation with sub-sampling the non-respondents. Survey Methodology, 26(2):183188.
  • Olkin, I. (1958). Multivariate ratio estimation for nite populations. Boimetrika, 45:154165.
  • Politz, A. and Simmons, W. (1949). An attempt to get the " not at homes" into the sample without callbacks. Journal of the American Statistical Association, 44(245):916.
  • Rao, J. N. K., Kovar, J. G., and Mental, H. J. (1990). On estimating distribu- tion functions and quantiles from survey data using auxiliary information. Biometrika, 77(2):365375.
  • Rao, P. S. R. S. (1986). Ratio estimation with sub sampling of non-respondents. Survey Methodology, 12:217230.
  • Rueda, M. and Arcos, A. (2004). Improving ratio-type quantile estimates in a nite population. Statistical Papers, 45:231248.
  • Rueda, M. M., Arcos, A., and Martinez, M. D. (2003). Dierence estimators of quantiles in nite populations. Biometrika, 12(2):481496.
  • Rueda, M. M., Arcos, A., Martinez, M. D., and Roman, Y. (2004). Some improved estimators of nite population quantile using auxiliary information in sample survey. Computational Statistics and data analysis, 45:825848.
  • Sarndal, C. E., Swensson, B., and Wretman, J. (1992). Model Assisted Survey Sampling. Springer Verlag, New York.
  • Shabbir, J. and Nasir, S. (2013). On estimating the nite population mean using two auxiliary variables in two phase sampling in the presence of non response. Commu- nication in Statistics-Theory and Methods, 42:41274145.
  • Singh, H. P. and Kumar, S. (2009). A general procedure of estimating the population mean in the presence of non-response under double sampling using auxiliary information. SORT, 33(1):7184.
  • Singh, H. P. and Kumar, S. (2010a). Estimation of mean in presence of non-response using two phase sampling scheme. Statistical Papers, 51:559582.
  • Singh, H. P. and Kumar, S. (2010b). Improved estimation of population mean under two phase sampling with sub-sampling of the non-respondents. Journal of Statistical Planning and Inference, DOI:10.1016/.jspi.
  • Singh, H. P., Sarjinder, S., and Kozak, M. (2008). A family of estimators of nite- population distribution function using auxiliary information. Accta Applicandae Math- ematicae, 104:115130.
  • Singh, S. (2003). Advanced sampling theory with applications.
  • Singh, S. and Joarder, A. H. (2002). Estimation of the distribution function and median in two phase sampling. Pakistan Journal of Statistics, 18(2):301319.
  • Tabasum, R. and Khan, I. A. (2006). Double sampling for ratio estimator for the population mean in the presence of non-response. Assam Statistical Review, 20:7383.
  • Wang, S. and Alan, H. D. (1996). A new estimator for the nite population distri- bution function. Journal of the American Statistical Association, 47:635646.
  • Woodru, R. S. (1952). Condence interval for medians and other position measures. Biometrika, 83(3):639652.
There are 42 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Statistics
Authors

Mazhar Yaqub This is me

Javid Shabbir This is me

Publication Date April 1, 2018
Published in Issue Year 2018 Volume: 47 Issue: 2

Cite

APA Yaqub, M., & Shabbir, J. (2018). Estimation of population distribution function in the presence of non-response. Hacettepe Journal of Mathematics and Statistics, 47(2), 471-511.
AMA Yaqub M, Shabbir J. Estimation of population distribution function in the presence of non-response. Hacettepe Journal of Mathematics and Statistics. April 2018;47(2):471-511.
Chicago Yaqub, Mazhar, and Javid Shabbir. “Estimation of Population Distribution Function in the Presence of Non-Response”. Hacettepe Journal of Mathematics and Statistics 47, no. 2 (April 2018): 471-511.
EndNote Yaqub M, Shabbir J (April 1, 2018) Estimation of population distribution function in the presence of non-response. Hacettepe Journal of Mathematics and Statistics 47 2 471–511.
IEEE M. Yaqub and J. Shabbir, “Estimation of population distribution function in the presence of non-response”, Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 2, pp. 471–511, 2018.
ISNAD Yaqub, Mazhar - Shabbir, Javid. “Estimation of Population Distribution Function in the Presence of Non-Response”. Hacettepe Journal of Mathematics and Statistics 47/2 (April 2018), 471-511.
JAMA Yaqub M, Shabbir J. Estimation of population distribution function in the presence of non-response. Hacettepe Journal of Mathematics and Statistics. 2018;47:471–511.
MLA Yaqub, Mazhar and Javid Shabbir. “Estimation of Population Distribution Function in the Presence of Non-Response”. Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 2, 2018, pp. 471-1.
Vancouver Yaqub M, Shabbir J. Estimation of population distribution function in the presence of non-response. Hacettepe Journal of Mathematics and Statistics. 2018;47(2):471-51.