Research Article
BibTex RIS Cite
Year 2018, Volume: 47 Issue: 1, 57 - 67, 01.02.2018

Abstract

References

  • CHUAQUI, M., DUREN, P. L., OSGOOD, B.: Schwarzian derivatives of convex mapping, Annales Academiae Scientiarum Fennicae Mathematica. V. 39, (2011), 449–460.
  • DUREN, P. L.: Univalent Univalent functions, Springer-Verlag New York, 1983.
  • GRAHAM, I., KOHR, G.: Geometric function theory in one and higher dimensions, Marcel Dekker, Inc New York, 2003.
  • HAYAMI, T., OWA, S.: New properties for starlike and convex functions of complex order, Int. J. Math. Analysis, V. 4 (2007), 39–62.
  • HAYAMI, T., OWA, S., SRIVASTAVA, H, M.: Coefficient inequalities for certain classes of analytic and univalent function, J. Ineq. Pure and Appl. Math. V. 8 (2007), 1–10.
  • NEHARI, Z.: A property of convex conformal maps, J. Analyse Math. 30, (1976), 390–393.
  • LI, S.: Volterra composition operators between weighted Bergman spaces and Bloch-type spaces, J. Korean Math. Soc, 45 no. 1 (2008), 229–248.
  • LI, S., STEVIC, S.: Products of composition and integral type operator from H1 to the Bloch space, Complex Variable Elliptic Functions, 53 no. 5 (2008), 463–474.
  • LI, S., STEVIC, S.: Products of Volterra type operator and composition operator from H1 and Bloch space to the Zygmund space, J. Math. Anal. Appl., 345 no. 1 (2008), 40–52.
  • LI, S., STEVIC, S.: Products of integral-type operators and composition operators between Bloch-type spaces to the Zygmund space, J. Math. Anal. Appl., 349 no. 2 (2009), 596–610.
  • SILVERMANN, H., SILVIA, E, M., TELAGE, D.: Convolution conditions for convexity, starlikeness and spiral-likeness, Math. Z. 162 (1978), 125–130.
  • YONEDA, R.: Pointwise multipliers from BMOA to BMOA Complex Variable, 49(14)(2004), 1045–1061.

Volterra type operator on the convex functions

Year 2018, Volume: 47 Issue: 1, 57 - 67, 01.02.2018

Abstract

In this paper we study the Volterra type operatör $I_g$ on convex functions. Furthermore, some new properties for convex, starlike and spirallike
functions of complex order are discussed.

References

  • CHUAQUI, M., DUREN, P. L., OSGOOD, B.: Schwarzian derivatives of convex mapping, Annales Academiae Scientiarum Fennicae Mathematica. V. 39, (2011), 449–460.
  • DUREN, P. L.: Univalent Univalent functions, Springer-Verlag New York, 1983.
  • GRAHAM, I., KOHR, G.: Geometric function theory in one and higher dimensions, Marcel Dekker, Inc New York, 2003.
  • HAYAMI, T., OWA, S.: New properties for starlike and convex functions of complex order, Int. J. Math. Analysis, V. 4 (2007), 39–62.
  • HAYAMI, T., OWA, S., SRIVASTAVA, H, M.: Coefficient inequalities for certain classes of analytic and univalent function, J. Ineq. Pure and Appl. Math. V. 8 (2007), 1–10.
  • NEHARI, Z.: A property of convex conformal maps, J. Analyse Math. 30, (1976), 390–393.
  • LI, S.: Volterra composition operators between weighted Bergman spaces and Bloch-type spaces, J. Korean Math. Soc, 45 no. 1 (2008), 229–248.
  • LI, S., STEVIC, S.: Products of composition and integral type operator from H1 to the Bloch space, Complex Variable Elliptic Functions, 53 no. 5 (2008), 463–474.
  • LI, S., STEVIC, S.: Products of Volterra type operator and composition operator from H1 and Bloch space to the Zygmund space, J. Math. Anal. Appl., 345 no. 1 (2008), 40–52.
  • LI, S., STEVIC, S.: Products of integral-type operators and composition operators between Bloch-type spaces to the Zygmund space, J. Math. Anal. Appl., 349 no. 2 (2009), 596–610.
  • SILVERMANN, H., SILVIA, E, M., TELAGE, D.: Convolution conditions for convexity, starlikeness and spiral-likeness, Math. Z. 162 (1978), 125–130.
  • YONEDA, R.: Pointwise multipliers from BMOA to BMOA Complex Variable, 49(14)(2004), 1045–1061.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Ali Ebadian This is me

Janusz Sokół

Publication Date February 1, 2018
Published in Issue Year 2018 Volume: 47 Issue: 1

Cite

APA Ebadian, A., & Sokół, J. (2018). Volterra type operator on the convex functions. Hacettepe Journal of Mathematics and Statistics, 47(1), 57-67.
AMA Ebadian A, Sokół J. Volterra type operator on the convex functions. Hacettepe Journal of Mathematics and Statistics. February 2018;47(1):57-67.
Chicago Ebadian, Ali, and Janusz Sokół. “Volterra Type Operator on the Convex Functions”. Hacettepe Journal of Mathematics and Statistics 47, no. 1 (February 2018): 57-67.
EndNote Ebadian A, Sokół J (February 1, 2018) Volterra type operator on the convex functions. Hacettepe Journal of Mathematics and Statistics 47 1 57–67.
IEEE A. Ebadian and J. Sokół, “Volterra type operator on the convex functions”, Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 1, pp. 57–67, 2018.
ISNAD Ebadian, Ali - Sokół, Janusz. “Volterra Type Operator on the Convex Functions”. Hacettepe Journal of Mathematics and Statistics 47/1 (February 2018), 57-67.
JAMA Ebadian A, Sokół J. Volterra type operator on the convex functions. Hacettepe Journal of Mathematics and Statistics. 2018;47:57–67.
MLA Ebadian, Ali and Janusz Sokół. “Volterra Type Operator on the Convex Functions”. Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 1, 2018, pp. 57-67.
Vancouver Ebadian A, Sokół J. Volterra type operator on the convex functions. Hacettepe Journal of Mathematics and Statistics. 2018;47(1):57-6.