A structure theorem of left regular cyber-groups
Year 2017,
Volume: 46 Issue: 6, 1093 - 1104, 01.12.2017
Ying Yuan
Xueming Ren
K. P. Shum
Abstract
An abundant semigroup S is a superabundant semigroup if each $\mathcal{H}^*$-class of S contains an idempotent. We call a superabundant semigroup a left regular cyber-group if the set of its idempotents forms a left regular band. After the investigation of the properties of superabundant semigroups, we establish a structure theorem for the left regular cybergroups by using the newly defined left twist product of semigroups.
References
- G. L. Bailes, Right inverse semigroups, J. of Algebra 26 (1973), 492–507.
- A. El-Qallali and J. B. Fountain, Quasi-adequate semigroups, Proc. Roy. Soc. Edinburgh
Sect. A, (1981), 91–99.
- J. B. Fountain, Adequate semigroups, Proc. Edinburgh Math. Soc. 22 (1979), 113–125.
- J. B. Fountain, Abundant semigroups, Proc. Lond. Math. Soc. 44 (1982), 103–129.
- X. J. Guo and K.P.Shum, On left cyber groups, Intern. Math. Journal 5(8) (2004), 705-717.
- J. M. Howie, An introduction to semigroup theory, Academic Press, London, 1976.
- J. M. Howie, Fundamentals of semigroup theory, Oxford University Press, New York, 1995.
- X.Z. Kong and K.P. Shum, Semilattice structure of rgular cyber groups, Pragmetic Algebra
I, India, (2006), 1-12.
- M. Petrich and N. R. Reilly,Completely regular semigroups, John Wiley & Sons, New York,
1999.
- M. Petrich, A structure theorem for completely regular semigroups, Proc. Amer. Math. Soc.,
99 (4) (1987), 617-622.
- X. M. Ren and K. P. Shum, The structure of Q-inverse semigroups, J. of Algebra, 325
(2011), 1–17.
- X. M. Ren and K. P. Shum, The structure of superabundant semigroups, Science in China
Series A: Mathematics 47(5) (2004), 756–771.
- X. M. Ren and K. P. Shum, On superabundant semigroups whose set of idempotents forms
a subsemigroup, Algebra Colloquium 14:2 (2007), 215–228.
- X. M. Ren and K. P. Shum, The structure of L-inverse semigroups, Science in China Series
A: Mathematics 49(8) (2006), 1065–1081.
- K. P. Shum, X. M. Ren and Y. Q. Guo, On C-quasiregular semigroups, Communications
in Algebra, 27 (19) (1999), 4251-4274.
- Lili Wang and Aifa Wang, Some properties of regular crypto H-abundant groups, Proceedings
of The 3rd International conference in Electric and Electronic, (EEJC-13), Atlantis
Press, doi:10.2991/eeic-13-2013-97.
- P. S. Venkatsen, Right (left) inverse semigroups, J. Algebra 31 (1974), 209–217.
- M. Yamada, Orthodox semigroups whose idempotents satisfy a certain identity, Semigroup
Forum 6 (1973), 113–128.
Year 2017,
Volume: 46 Issue: 6, 1093 - 1104, 01.12.2017
Ying Yuan
Xueming Ren
K. P. Shum
References
- G. L. Bailes, Right inverse semigroups, J. of Algebra 26 (1973), 492–507.
- A. El-Qallali and J. B. Fountain, Quasi-adequate semigroups, Proc. Roy. Soc. Edinburgh
Sect. A, (1981), 91–99.
- J. B. Fountain, Adequate semigroups, Proc. Edinburgh Math. Soc. 22 (1979), 113–125.
- J. B. Fountain, Abundant semigroups, Proc. Lond. Math. Soc. 44 (1982), 103–129.
- X. J. Guo and K.P.Shum, On left cyber groups, Intern. Math. Journal 5(8) (2004), 705-717.
- J. M. Howie, An introduction to semigroup theory, Academic Press, London, 1976.
- J. M. Howie, Fundamentals of semigroup theory, Oxford University Press, New York, 1995.
- X.Z. Kong and K.P. Shum, Semilattice structure of rgular cyber groups, Pragmetic Algebra
I, India, (2006), 1-12.
- M. Petrich and N. R. Reilly,Completely regular semigroups, John Wiley & Sons, New York,
1999.
- M. Petrich, A structure theorem for completely regular semigroups, Proc. Amer. Math. Soc.,
99 (4) (1987), 617-622.
- X. M. Ren and K. P. Shum, The structure of Q-inverse semigroups, J. of Algebra, 325
(2011), 1–17.
- X. M. Ren and K. P. Shum, The structure of superabundant semigroups, Science in China
Series A: Mathematics 47(5) (2004), 756–771.
- X. M. Ren and K. P. Shum, On superabundant semigroups whose set of idempotents forms
a subsemigroup, Algebra Colloquium 14:2 (2007), 215–228.
- X. M. Ren and K. P. Shum, The structure of L-inverse semigroups, Science in China Series
A: Mathematics 49(8) (2006), 1065–1081.
- K. P. Shum, X. M. Ren and Y. Q. Guo, On C-quasiregular semigroups, Communications
in Algebra, 27 (19) (1999), 4251-4274.
- Lili Wang and Aifa Wang, Some properties of regular crypto H-abundant groups, Proceedings
of The 3rd International conference in Electric and Electronic, (EEJC-13), Atlantis
Press, doi:10.2991/eeic-13-2013-97.
- P. S. Venkatsen, Right (left) inverse semigroups, J. Algebra 31 (1974), 209–217.
- M. Yamada, Orthodox semigroups whose idempotents satisfy a certain identity, Semigroup
Forum 6 (1973), 113–128.