Research Article
BibTex RIS Cite

A structure theorem of left regular cyber-groups

Year 2017, Volume: 46 Issue: 6, 1093 - 1104, 01.12.2017

Abstract

An abundant semigroup S is a superabundant semigroup if each $\mathcal{H}^*$-class of S contains an idempotent. We call a superabundant semigroup a left regular cyber-group if the set of its idempotents forms a left regular band. After the investigation of the properties of superabundant semigroups, we establish a structure theorem for the left regular cybergroups by using the newly defined left twist product of semigroups.

References

  • G. L. Bailes, Right inverse semigroups, J. of Algebra 26 (1973), 492–507.
  • A. El-Qallali and J. B. Fountain, Quasi-adequate semigroups, Proc. Roy. Soc. Edinburgh Sect. A, (1981), 91–99.
  • J. B. Fountain, Adequate semigroups, Proc. Edinburgh Math. Soc. 22 (1979), 113–125.
  • J. B. Fountain, Abundant semigroups, Proc. Lond. Math. Soc. 44 (1982), 103–129.
  • X. J. Guo and K.P.Shum, On left cyber groups, Intern. Math. Journal 5(8) (2004), 705-717.
  • J. M. Howie, An introduction to semigroup theory, Academic Press, London, 1976.
  • J. M. Howie, Fundamentals of semigroup theory, Oxford University Press, New York, 1995.
  • X.Z. Kong and K.P. Shum, Semilattice structure of rgular cyber groups, Pragmetic Algebra I, India, (2006), 1-12.
  • M. Petrich and N. R. Reilly,Completely regular semigroups, John Wiley & Sons, New York, 1999.
  • M. Petrich, A structure theorem for completely regular semigroups, Proc. Amer. Math. Soc., 99 (4) (1987), 617-622.
  • X. M. Ren and K. P. Shum, The structure of Q-inverse semigroups, J. of Algebra, 325 (2011), 1–17.
  • X. M. Ren and K. P. Shum, The structure of superabundant semigroups, Science in China Series A: Mathematics 47(5) (2004), 756–771.
  • X. M. Ren and K. P. Shum, On superabundant semigroups whose set of idempotents forms a subsemigroup, Algebra Colloquium 14:2 (2007), 215–228.
  • X. M. Ren and K. P. Shum, The structure of L-inverse semigroups, Science in China Series A: Mathematics 49(8) (2006), 1065–1081.
  • K. P. Shum, X. M. Ren and Y. Q. Guo, On C-quasiregular semigroups, Communications in Algebra, 27 (19) (1999), 4251-4274.
  • Lili Wang and Aifa Wang, Some properties of regular crypto H-abundant groups, Proceedings of The 3rd International conference in Electric and Electronic, (EEJC-13), Atlantis Press, doi:10.2991/eeic-13-2013-97.
  • P. S. Venkatsen, Right (left) inverse semigroups, J. Algebra 31 (1974), 209–217.
  • M. Yamada, Orthodox semigroups whose idempotents satisfy a certain identity, Semigroup Forum 6 (1973), 113–128.
Year 2017, Volume: 46 Issue: 6, 1093 - 1104, 01.12.2017

Abstract

References

  • G. L. Bailes, Right inverse semigroups, J. of Algebra 26 (1973), 492–507.
  • A. El-Qallali and J. B. Fountain, Quasi-adequate semigroups, Proc. Roy. Soc. Edinburgh Sect. A, (1981), 91–99.
  • J. B. Fountain, Adequate semigroups, Proc. Edinburgh Math. Soc. 22 (1979), 113–125.
  • J. B. Fountain, Abundant semigroups, Proc. Lond. Math. Soc. 44 (1982), 103–129.
  • X. J. Guo and K.P.Shum, On left cyber groups, Intern. Math. Journal 5(8) (2004), 705-717.
  • J. M. Howie, An introduction to semigroup theory, Academic Press, London, 1976.
  • J. M. Howie, Fundamentals of semigroup theory, Oxford University Press, New York, 1995.
  • X.Z. Kong and K.P. Shum, Semilattice structure of rgular cyber groups, Pragmetic Algebra I, India, (2006), 1-12.
  • M. Petrich and N. R. Reilly,Completely regular semigroups, John Wiley & Sons, New York, 1999.
  • M. Petrich, A structure theorem for completely regular semigroups, Proc. Amer. Math. Soc., 99 (4) (1987), 617-622.
  • X. M. Ren and K. P. Shum, The structure of Q-inverse semigroups, J. of Algebra, 325 (2011), 1–17.
  • X. M. Ren and K. P. Shum, The structure of superabundant semigroups, Science in China Series A: Mathematics 47(5) (2004), 756–771.
  • X. M. Ren and K. P. Shum, On superabundant semigroups whose set of idempotents forms a subsemigroup, Algebra Colloquium 14:2 (2007), 215–228.
  • X. M. Ren and K. P. Shum, The structure of L-inverse semigroups, Science in China Series A: Mathematics 49(8) (2006), 1065–1081.
  • K. P. Shum, X. M. Ren and Y. Q. Guo, On C-quasiregular semigroups, Communications in Algebra, 27 (19) (1999), 4251-4274.
  • Lili Wang and Aifa Wang, Some properties of regular crypto H-abundant groups, Proceedings of The 3rd International conference in Electric and Electronic, (EEJC-13), Atlantis Press, doi:10.2991/eeic-13-2013-97.
  • P. S. Venkatsen, Right (left) inverse semigroups, J. Algebra 31 (1974), 209–217.
  • M. Yamada, Orthodox semigroups whose idempotents satisfy a certain identity, Semigroup Forum 6 (1973), 113–128.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Ying Yuan This is me

Xueming Ren This is me

K. P. Shum

Publication Date December 1, 2017
Published in Issue Year 2017 Volume: 46 Issue: 6

Cite

APA Yuan, Y., Ren, X., & Shum, K. P. (2017). A structure theorem of left regular cyber-groups. Hacettepe Journal of Mathematics and Statistics, 46(6), 1093-1104.
AMA Yuan Y, Ren X, Shum KP. A structure theorem of left regular cyber-groups. Hacettepe Journal of Mathematics and Statistics. December 2017;46(6):1093-1104.
Chicago Yuan, Ying, Xueming Ren, and K. P. Shum. “A Structure Theorem of Left Regular Cyber-Groups”. Hacettepe Journal of Mathematics and Statistics 46, no. 6 (December 2017): 1093-1104.
EndNote Yuan Y, Ren X, Shum KP (December 1, 2017) A structure theorem of left regular cyber-groups. Hacettepe Journal of Mathematics and Statistics 46 6 1093–1104.
IEEE Y. Yuan, X. Ren, and K. P. Shum, “A structure theorem of left regular cyber-groups”, Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 6, pp. 1093–1104, 2017.
ISNAD Yuan, Ying et al. “A Structure Theorem of Left Regular Cyber-Groups”. Hacettepe Journal of Mathematics and Statistics 46/6 (December 2017), 1093-1104.
JAMA Yuan Y, Ren X, Shum KP. A structure theorem of left regular cyber-groups. Hacettepe Journal of Mathematics and Statistics. 2017;46:1093–1104.
MLA Yuan, Ying et al. “A Structure Theorem of Left Regular Cyber-Groups”. Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 6, 2017, pp. 1093-04.
Vancouver Yuan Y, Ren X, Shum KP. A structure theorem of left regular cyber-groups. Hacettepe Journal of Mathematics and Statistics. 2017;46(6):1093-104.