Research Article
BibTex RIS Cite

Some properties of the Canberra inequality index

Year 2017, Volume: 46 Issue: 6, 1159 - 1174, 01.12.2017

Abstract

In this paper, we study some properties of the Canberra index which is based on Canberra distance function. Some features that required to an inequality index are investigated. Also we present explicit expression for the Canberra curve in some important inequality distributions. Further, we compare the Canberra curve with the traditional Lorenz curve. A simulation study based on fitted distribution to real income data is performed in order to investigate the asymptotic behavior of the proposed sampling estimator. Finally, the superiority of this index is illustrated by means of a real data set.

References

  • Arcagni, A. and Porro, F. The graphical reprensentation of inequality, Revista Colombiana de Estadistica 37 (2), 419-436, 2014.
  • Arnold, B. C. On Zenga and Bonferroni curves, Metron 73 (1), 25-30, 2015.
  • Bonferroni, C. E. Elementi di statistica generale, Università commerciale L. Bocconi, 1961.
  • Cha, S. H. Comprehensive survey on distance measures between probability density function, International Journal of Mathematical Models and Methods in Applied Sciences 4, 343-356, 2007.
  • Chakravarty, S. R. Extended Gini indices of inequality, International Economic Review 29, 147-156, 1988.
  • Gini, C. Variabilita e mutabilita. Reprinted in Memorie di metodologica statistica (Ed. Pizetti E & Salvemini, T), Rome: Libreria Eredi Virgilio Veschi 1, 1912.
  • Hoeffding, W. A class of statistics with asymptotically normal distribution, Journal of Annals of Mathematical Statistics 19, 293-325, 1948.
  • Jedrzejczak, A. Estimation of concentration measures and their standard errors for income distributions in Poland, International Advanced Economic Research 18, 287–297, 2012.
  • Kakwani, N. On a class of poverty measures, Journal of Econometric Society 16, 437-446, 1980.
  • Kleiber, C. and Kotz, S. Statistical Size Distributions in Economics and Actuarial Sciences, John Wiley and Sons, New Jersey, Hoboken, 2003.
  • Lance, G. N. and Williams, W. T. Mixed Data Classificatory Programs I Agglomerative Systems, Statistical size distributions in economics and actuarial sciences 1, 15-20, 1967.
  • Lorenz, M. O. Methods of measuring the concentration of wealth, Journal of the American Statistical Association 9 (70), 209-219, 1905.
  • Mehran, F. Linear measures of income inequality, Journal of Econometric Society 15, 805- 809, 1976.
  • Pietra, G. Delle relazioni fra indici di variabilita note I e II, Atti del Reale Istituto Veneto di Scienze, Lettere ed Arti 74 (2), 775-804, 1915.
  • Polisicchio, M. and Porro, F. A comparison between Lorenz L(p) curve and Zenga I(p) curve, Statistica Applicata 21 (3-4), 289-301, 2009.
  • Sarabia, J. M. Parametric Lorenz curves: models and applications. In Modeling Income Distributions and Lorenz Curves, Springer, New York, 167-190, 2008.
  • Subramanian, S. On a distance function-based inequality measure in the spirit of the Bonferroni and Gini Indices, WIDER Working Paper 62, 2012.
  • Zenga, M. Tendenza alla massima ed alla minima concentrazione per variabili casuali continue, Statistica 44 (4), 619-640, 1984.
  • Zenga, M. Inequality curve and inequality index based on the ratios between lower and upper arithmetic means, Statistica Applicazioni 5 (1), 3-28, 2007.
Year 2017, Volume: 46 Issue: 6, 1159 - 1174, 01.12.2017

Abstract

References

  • Arcagni, A. and Porro, F. The graphical reprensentation of inequality, Revista Colombiana de Estadistica 37 (2), 419-436, 2014.
  • Arnold, B. C. On Zenga and Bonferroni curves, Metron 73 (1), 25-30, 2015.
  • Bonferroni, C. E. Elementi di statistica generale, Università commerciale L. Bocconi, 1961.
  • Cha, S. H. Comprehensive survey on distance measures between probability density function, International Journal of Mathematical Models and Methods in Applied Sciences 4, 343-356, 2007.
  • Chakravarty, S. R. Extended Gini indices of inequality, International Economic Review 29, 147-156, 1988.
  • Gini, C. Variabilita e mutabilita. Reprinted in Memorie di metodologica statistica (Ed. Pizetti E & Salvemini, T), Rome: Libreria Eredi Virgilio Veschi 1, 1912.
  • Hoeffding, W. A class of statistics with asymptotically normal distribution, Journal of Annals of Mathematical Statistics 19, 293-325, 1948.
  • Jedrzejczak, A. Estimation of concentration measures and their standard errors for income distributions in Poland, International Advanced Economic Research 18, 287–297, 2012.
  • Kakwani, N. On a class of poverty measures, Journal of Econometric Society 16, 437-446, 1980.
  • Kleiber, C. and Kotz, S. Statistical Size Distributions in Economics and Actuarial Sciences, John Wiley and Sons, New Jersey, Hoboken, 2003.
  • Lance, G. N. and Williams, W. T. Mixed Data Classificatory Programs I Agglomerative Systems, Statistical size distributions in economics and actuarial sciences 1, 15-20, 1967.
  • Lorenz, M. O. Methods of measuring the concentration of wealth, Journal of the American Statistical Association 9 (70), 209-219, 1905.
  • Mehran, F. Linear measures of income inequality, Journal of Econometric Society 15, 805- 809, 1976.
  • Pietra, G. Delle relazioni fra indici di variabilita note I e II, Atti del Reale Istituto Veneto di Scienze, Lettere ed Arti 74 (2), 775-804, 1915.
  • Polisicchio, M. and Porro, F. A comparison between Lorenz L(p) curve and Zenga I(p) curve, Statistica Applicata 21 (3-4), 289-301, 2009.
  • Sarabia, J. M. Parametric Lorenz curves: models and applications. In Modeling Income Distributions and Lorenz Curves, Springer, New York, 167-190, 2008.
  • Subramanian, S. On a distance function-based inequality measure in the spirit of the Bonferroni and Gini Indices, WIDER Working Paper 62, 2012.
  • Zenga, M. Tendenza alla massima ed alla minima concentrazione per variabili casuali continue, Statistica 44 (4), 619-640, 1984.
  • Zenga, M. Inequality curve and inequality index based on the ratios between lower and upper arithmetic means, Statistica Applicazioni 5 (1), 3-28, 2007.
There are 19 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Statistics
Authors

Shahryar Mirzaei This is me

Gholam Reza Mohtashami Borzadaran

Mohammad Amini This is me

Hadi Jabbari This is me

Publication Date December 1, 2017
Published in Issue Year 2017 Volume: 46 Issue: 6

Cite

APA Mirzaei, S., Borzadaran, G. R. M., Amini, M., Jabbari, H. (2017). Some properties of the Canberra inequality index. Hacettepe Journal of Mathematics and Statistics, 46(6), 1159-1174.
AMA Mirzaei S, Borzadaran GRM, Amini M, Jabbari H. Some properties of the Canberra inequality index. Hacettepe Journal of Mathematics and Statistics. December 2017;46(6):1159-1174.
Chicago Mirzaei, Shahryar, Gholam Reza Mohtashami Borzadaran, Mohammad Amini, and Hadi Jabbari. “Some Properties of the Canberra Inequality Index”. Hacettepe Journal of Mathematics and Statistics 46, no. 6 (December 2017): 1159-74.
EndNote Mirzaei S, Borzadaran GRM, Amini M, Jabbari H (December 1, 2017) Some properties of the Canberra inequality index. Hacettepe Journal of Mathematics and Statistics 46 6 1159–1174.
IEEE S. Mirzaei, G. R. M. Borzadaran, M. Amini, and H. Jabbari, “Some properties of the Canberra inequality index”, Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 6, pp. 1159–1174, 2017.
ISNAD Mirzaei, Shahryar et al. “Some Properties of the Canberra Inequality Index”. Hacettepe Journal of Mathematics and Statistics 46/6 (December 2017), 1159-1174.
JAMA Mirzaei S, Borzadaran GRM, Amini M, Jabbari H. Some properties of the Canberra inequality index. Hacettepe Journal of Mathematics and Statistics. 2017;46:1159–1174.
MLA Mirzaei, Shahryar et al. “Some Properties of the Canberra Inequality Index”. Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 6, 2017, pp. 1159-74.
Vancouver Mirzaei S, Borzadaran GRM, Amini M, Jabbari H. Some properties of the Canberra inequality index. Hacettepe Journal of Mathematics and Statistics. 2017;46(6):1159-74.