Research Article
BibTex RIS Cite
Year 2017, Volume: 46 Issue: 5, 875 - 886, 01.10.2017

Abstract

References

  • Azumaya, G. Finite splitness and finite projectivity, J. Algebra 106 (1) , 114-134, 1987.
  • Camillo, V. Coherence for polynomial rings, J. Algebra 132 (1) , 72-76, 1990.
  • Cartan , H. and Eilenberg, S. Homological algebra, Princeton : Princeton University Press 1956.
  • Chase, S. U. Direct products of modules, Trans. Amer. Math. Soc. 97 , 457-473, 1960.
  • Chen, J. L., Ding, N. Q. A note on existence of envelopes and covers, Bull. Austral. Math. Soc. 54 (3), 383-390, 1996.
  • Chen, J. L., Ding, N. Q. On regularity of rings, Algebra colloq. 8 (3), 267-274, 2001.
  • Chen, J. L., Li, W. X. On artiness of right CF rings, Comm. Algebra 32 (11), 4485-4494, 2004.
  • Colby, R. R. Rings which have flat injective modules, J. Algebra 35, 239-252, 1975.
  • Ding, N. Q., Chen, J. L. Relative coherence and preenvelopes, Manuscripta Math. 81 (3-4), 243-262, 1993.
  • Faith, C. Embedding torsionless modules in projectives, J. Publ. Mat. 34 (2), 379-387, 1990.
  • Enochs, E. E., Jenda, O. M. G. Relative Homological Algebra, Berlin-New York: Walter de Gruyter 2000.
  • Jain, S. Flat and FP-injectivity, Proc. Amer. Math. Soc. 41 (2), 437-442, 1973.
  • Jøndrup, S. p.p.rings and finitely generated flat ideals, Proc. Amer. Math. Soc. 28 (2), 431-435, 1971.
  • Jones, M. F. Flatness and f -projectivity of torsion free modules and injective modules, Lecture Notes in Math. 951, 94-116, 1982.
  • Li, W. X., Chen J. L. When CF rings are artinian, J. Algebra Appl, 12 (4), 1250059, 7 pp., 2013.
  • Nicholson, W. K., Yousif, M. F. Principally injective rings, J. Algebra 174 (1), 77-93, 1995.
  • Nicholson, W. K., Yousif, M. F. Quasi-Frobenius Rings, Cambridge: Cambridge University Press 2003.
  • Wisbauer, R. Foundations of Module and Ring Theory, London-Tokyo: Gordon and Breach 1991.
  • Wang, M.Y. Some studies on $\Pi$-coherent rings, Proc. Amer. Math. Soc. 119 (1) , 71-76, 1993.
  • Zhang , X. X., Chen, J. L. and Zhang, J. On (m; n)-injective modules and (m; n)-coherent rings, Algebra Colloq. 12 (1) , 149-160, 2005.
  • Zhang, X. X., Chen, J. L. On n-semihereditary and n-coherent rings, Int. Electron. J. Algebra 1 (2007), 1-10.
  • Zhu, S. L. On rings over which every flat left module is finitely projective, J. Algebra 139 (2), 311-321, 1991.
  • Zhu, Z. M., Tan, Z. S. On n-semihereditary rings. Scientiae Mathematicae Japonicae, 62 (3), 455-459, 2005.

On $\Pi$-coherence of rings

Year 2017, Volume: 46 Issue: 5, 875 - 886, 01.10.2017

Abstract

Let $n$ be a fixed positive integer. A ring $R$ is called left $n$-$\Pi$-coherent if every $n$-generated torsionless left $R$-module is finitely presented, some characterizations and applications of $n$-$\Pi$-coherent rings are obtained.

References

  • Azumaya, G. Finite splitness and finite projectivity, J. Algebra 106 (1) , 114-134, 1987.
  • Camillo, V. Coherence for polynomial rings, J. Algebra 132 (1) , 72-76, 1990.
  • Cartan , H. and Eilenberg, S. Homological algebra, Princeton : Princeton University Press 1956.
  • Chase, S. U. Direct products of modules, Trans. Amer. Math. Soc. 97 , 457-473, 1960.
  • Chen, J. L., Ding, N. Q. A note on existence of envelopes and covers, Bull. Austral. Math. Soc. 54 (3), 383-390, 1996.
  • Chen, J. L., Ding, N. Q. On regularity of rings, Algebra colloq. 8 (3), 267-274, 2001.
  • Chen, J. L., Li, W. X. On artiness of right CF rings, Comm. Algebra 32 (11), 4485-4494, 2004.
  • Colby, R. R. Rings which have flat injective modules, J. Algebra 35, 239-252, 1975.
  • Ding, N. Q., Chen, J. L. Relative coherence and preenvelopes, Manuscripta Math. 81 (3-4), 243-262, 1993.
  • Faith, C. Embedding torsionless modules in projectives, J. Publ. Mat. 34 (2), 379-387, 1990.
  • Enochs, E. E., Jenda, O. M. G. Relative Homological Algebra, Berlin-New York: Walter de Gruyter 2000.
  • Jain, S. Flat and FP-injectivity, Proc. Amer. Math. Soc. 41 (2), 437-442, 1973.
  • Jøndrup, S. p.p.rings and finitely generated flat ideals, Proc. Amer. Math. Soc. 28 (2), 431-435, 1971.
  • Jones, M. F. Flatness and f -projectivity of torsion free modules and injective modules, Lecture Notes in Math. 951, 94-116, 1982.
  • Li, W. X., Chen J. L. When CF rings are artinian, J. Algebra Appl, 12 (4), 1250059, 7 pp., 2013.
  • Nicholson, W. K., Yousif, M. F. Principally injective rings, J. Algebra 174 (1), 77-93, 1995.
  • Nicholson, W. K., Yousif, M. F. Quasi-Frobenius Rings, Cambridge: Cambridge University Press 2003.
  • Wisbauer, R. Foundations of Module and Ring Theory, London-Tokyo: Gordon and Breach 1991.
  • Wang, M.Y. Some studies on $\Pi$-coherent rings, Proc. Amer. Math. Soc. 119 (1) , 71-76, 1993.
  • Zhang , X. X., Chen, J. L. and Zhang, J. On (m; n)-injective modules and (m; n)-coherent rings, Algebra Colloq. 12 (1) , 149-160, 2005.
  • Zhang, X. X., Chen, J. L. On n-semihereditary and n-coherent rings, Int. Electron. J. Algebra 1 (2007), 1-10.
  • Zhu, S. L. On rings over which every flat left module is finitely projective, J. Algebra 139 (2), 311-321, 1991.
  • Zhu, Z. M., Tan, Z. S. On n-semihereditary rings. Scientiae Mathematicae Japonicae, 62 (3), 455-459, 2005.
There are 23 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Zhu Zhanmin This is me

Publication Date October 1, 2017
Published in Issue Year 2017 Volume: 46 Issue: 5

Cite

APA Zhanmin, Z. (2017). On $\Pi$-coherence of rings. Hacettepe Journal of Mathematics and Statistics, 46(5), 875-886.
AMA Zhanmin Z. On $\Pi$-coherence of rings. Hacettepe Journal of Mathematics and Statistics. October 2017;46(5):875-886.
Chicago Zhanmin, Zhu. “On $\Pi$-Coherence of Rings”. Hacettepe Journal of Mathematics and Statistics 46, no. 5 (October 2017): 875-86.
EndNote Zhanmin Z (October 1, 2017) On $\Pi$-coherence of rings. Hacettepe Journal of Mathematics and Statistics 46 5 875–886.
IEEE Z. Zhanmin, “On $\Pi$-coherence of rings”, Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 5, pp. 875–886, 2017.
ISNAD Zhanmin, Zhu. “On $\Pi$-Coherence of Rings”. Hacettepe Journal of Mathematics and Statistics 46/5 (October 2017), 875-886.
JAMA Zhanmin Z. On $\Pi$-coherence of rings. Hacettepe Journal of Mathematics and Statistics. 2017;46:875–886.
MLA Zhanmin, Zhu. “On $\Pi$-Coherence of Rings”. Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 5, 2017, pp. 875-86.
Vancouver Zhanmin Z. On $\Pi$-coherence of rings. Hacettepe Journal of Mathematics and Statistics. 2017;46(5):875-86.