Research Article
BibTex RIS Cite

$q-$Harmonic mappings for which analytic part is $q-$convex functions of complex order

Year 2018, Volume: 47 Issue: 4, 813 - 820, 01.08.2018

Abstract

We introduce a new class of harmonic function $f$, that is subclass of planar harmonic mapping associated with $q-$difference operator. Let $h$ and $g$ are analytic functions in the open unit disc $\mathbb{D}=\{ z\,:\,|z|<1 \}$. If $f=h+\bar{g}$ is the solution of the non-linear partial differential equation $w_q(z)=\dfrac{D_q g(z)}{D_q h(z)}=\dfrac{\bar{f}_\bar{z}}{f_z}$ with $|w_q(z)|<1$, $w_q(z)\prec b_1 \dfrac{1+z}{1-qz}$ and $h$ is $q-$convex function of complex order, then the class of such functions are called $q-$harmonic functions for which analytic part is $q-$convex functions of complex order denoted by $\mathcal{S}_{ \mathcal{H}\mathcal{C}_q(b)}$. Obviously that the class $\mathcal{S}_{ \mathcal{H}\mathcal{C}_q(b)}$ is the subclass of $\mathcal{S}_\mathcal{H}$. In this paper, we investigate properties of the class $\mathcal{S}_{ \mathcal{H}\mathcal{C}_q(b)}$ by using subordination techniques.

References

  • Andrews, G.E. Applications of basic hypergeometric functions, SIAM Rev. 16 (1974), 441- 484.
  • Çetinkaya, A. and Mert, O. A certain class of harmonic mappings related to functions of bounded boundary rotation, Proc. of 12th Symposium on Geometric Function Theory and Applications (2016), 67-76.
  • Duren, P. Harmonic mappings in the plane, Cambridge Tracts in Math. 2004.
  • Fine, N.J. Basic hypergeometric series and applications, Math. Surveys Monogr. 1988.
  • Gasper, G. and Rahman, M. Basic hypergeometric series, Cambridge University Press, 2004.
  • Goodman, A.W. Univalent functions Volume I and II, Polygonal Pub. House, 1983.
  • Jack, I.S. Functions starlike and convex of order $\alpha$, J. Lond. Math. Soc. (2), 3 (1971), 469-474.
  • Jackson, F.H. On $q-$functions and a certain difference operator, Trans. Roy. Soc. Edin. 46 (1908), 253-281.
  • Jackson, F.H. On $q-$difference integrals, Quart. J. Pure Appl. Math. 41 (1910), 193-203.
  • Kac, V. and Cheung, P. Quantum calculus, Springer, 2001.
  • Lewy, H. On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), 689-692.
  • Polatoglu, Y., Aydogan, M. and Mert, O. Some properties of $q-$convex functions of complex order, Sarajevo J. Math. Submitted, 2016.
Year 2018, Volume: 47 Issue: 4, 813 - 820, 01.08.2018

Abstract

References

  • Andrews, G.E. Applications of basic hypergeometric functions, SIAM Rev. 16 (1974), 441- 484.
  • Çetinkaya, A. and Mert, O. A certain class of harmonic mappings related to functions of bounded boundary rotation, Proc. of 12th Symposium on Geometric Function Theory and Applications (2016), 67-76.
  • Duren, P. Harmonic mappings in the plane, Cambridge Tracts in Math. 2004.
  • Fine, N.J. Basic hypergeometric series and applications, Math. Surveys Monogr. 1988.
  • Gasper, G. and Rahman, M. Basic hypergeometric series, Cambridge University Press, 2004.
  • Goodman, A.W. Univalent functions Volume I and II, Polygonal Pub. House, 1983.
  • Jack, I.S. Functions starlike and convex of order $\alpha$, J. Lond. Math. Soc. (2), 3 (1971), 469-474.
  • Jackson, F.H. On $q-$functions and a certain difference operator, Trans. Roy. Soc. Edin. 46 (1908), 253-281.
  • Jackson, F.H. On $q-$difference integrals, Quart. J. Pure Appl. Math. 41 (1910), 193-203.
  • Kac, V. and Cheung, P. Quantum calculus, Springer, 2001.
  • Lewy, H. On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), 689-692.
  • Polatoglu, Y., Aydogan, M. and Mert, O. Some properties of $q-$convex functions of complex order, Sarajevo J. Math. Submitted, 2016.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Asena Çetinkaya

Yaşar Polatoğlu

Publication Date August 1, 2018
Published in Issue Year 2018 Volume: 47 Issue: 4

Cite

APA Çetinkaya, A., & Polatoğlu, Y. (2018). $q-$Harmonic mappings for which analytic part is $q-$convex functions of complex order. Hacettepe Journal of Mathematics and Statistics, 47(4), 813-820.
AMA Çetinkaya A, Polatoğlu Y. $q-$Harmonic mappings for which analytic part is $q-$convex functions of complex order. Hacettepe Journal of Mathematics and Statistics. August 2018;47(4):813-820.
Chicago Çetinkaya, Asena, and Yaşar Polatoğlu. “$q-$Harmonic Mappings for Which Analytic Part Is $q-$convex Functions of Complex Order”. Hacettepe Journal of Mathematics and Statistics 47, no. 4 (August 2018): 813-20.
EndNote Çetinkaya A, Polatoğlu Y (August 1, 2018) $q-$Harmonic mappings for which analytic part is $q-$convex functions of complex order. Hacettepe Journal of Mathematics and Statistics 47 4 813–820.
IEEE A. Çetinkaya and Y. Polatoğlu, “$q-$Harmonic mappings for which analytic part is $q-$convex functions of complex order”, Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 4, pp. 813–820, 2018.
ISNAD Çetinkaya, Asena - Polatoğlu, Yaşar. “$q-$Harmonic Mappings for Which Analytic Part Is $q-$convex Functions of Complex Order”. Hacettepe Journal of Mathematics and Statistics 47/4 (August 2018), 813-820.
JAMA Çetinkaya A, Polatoğlu Y. $q-$Harmonic mappings for which analytic part is $q-$convex functions of complex order. Hacettepe Journal of Mathematics and Statistics. 2018;47:813–820.
MLA Çetinkaya, Asena and Yaşar Polatoğlu. “$q-$Harmonic Mappings for Which Analytic Part Is $q-$convex Functions of Complex Order”. Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 4, 2018, pp. 813-20.
Vancouver Çetinkaya A, Polatoğlu Y. $q-$Harmonic mappings for which analytic part is $q-$convex functions of complex order. Hacettepe Journal of Mathematics and Statistics. 2018;47(4):813-20.