Research Article
BibTex RIS Cite

Some properties of the total graph and regular graph of a commutative ring

Year 2018, Volume: 47 Issue: 4, 835 - 843, 01.08.2018

Abstract

Let $R$ be a commutative ring with unity. The total graph of $R$, $T(\Gamma(R))$, is the simple graph with vertex set $R$ and two distinct vertices are adjacent if their sum is a zero-divisor in $R$. Let Reg$(\Gamma(R))$ and $Z(\Gamma(R))$ be the subgraphs of $T(\Gamma(R))$ induced by the set of all regular elements and the set of zero-divisors in $R$, respectively. We determine when each of the graphs $T(\Gamma(R))$, Reg$(\Gamma(R))$, and $Z(\Gamma(R))$ is locally connected, and when it is locally homogeneous. When each of Reg$(\Gamma(R))$ and
$Z(\Gamma(R))$ is regular and when it is Eulerian.

References

  • Anderson, D. F., Badawi, A. The Total graph of a commutative ring, J. Algebra 320, 2706-2719, (2008).
  • Anderson, D. F., Badawi, A.The gereralized total graph of a commutative ring, J. Algebra App. 12 (2013), doi: 10.1142/S021949881250212X (2013).
  • Akbari, S. , Kiani, D., Mohammadi, F., Moradi, S. The total graph and regular graph of a commutative ring. J. Pure Appl. Algebra 213 (12) 2224-2228 (2009).
  • Akbari, S., Haydari, F. The regular graph of a commutative ring, Period Math. Hungar. 67 (2) 211-220 (2013).
  • Asir, T., Chelvam, T. On the total graph and its complement of a commutative ring, Comm. Algebra. 41, 38820-3835, dio:10.1080/009282.2012.678956 (2013).
  • Badawi, A. On the total graph of a ring and its related graphs: A Survey, M. Fontana et al. (eds.), Commutative Algebra: Recent Advances in Commutative Rings, Integer-Valued Polynomials, and Polynomial Functions, Springer, New York. doi: 10.1007/978-1-4939- 0925-4-3 (2014).
  • Chelvam, T., Asir, T. Domination in the total graph of a commutative ring, J. Combin. Math. Combin. Comput. 87, 147-158 (2013).
  • Eri\'{c}, A. Lj., Pucanovi\'{c}, Z. S. Some properties of the line graphs associated to the total graph of a commutative ring, Pure Appl. Math. J. 2 (2) 51-55 (2013).
  • Harary, F. Graph Theory. Publishing Co., Reading Mass (1972).
  • Nazzal K. Total graphs associated to a commutative ring, Palest. J. Math. 5 (Spec.1) (2016).
  • Koshy, T. Elementary number theory with applications. Harcourt Academic press Co.(2002).
  • Maimani, H. R., Wickham, C. Yassemi, S. Rings whose total graphs have genus at most one, Rocky Mountain J. Math. 42, 1421-1758 (2010).
  • Pucanovi, Z., Petrovi, Z. On the radius and the relation between the total graph of a commutative ring and its extensions, Pub. Ins. Math. (Beograd) (N.S.) 89,1-9 (2011).
  • Ramin, A. The total graph of a finite commutative ring. Turk J. Math, 37, 391-397 (2013).
  • Sander, T., Nazzal, K. Minimum flows in the total graph of a finite commutative ring, Trans. Comb. 3(3), 11-20 (2014).
  • Shekarriza, M. H. Shirdareh Haghighia, M. H., Sharifa, H. On the total graph of a finite commutative ring, Comm. Algebra. 40, 2798-2807 (2012).
  • Vince A. Locally homogeneous graphs from groups, J. Graph Theory, 4, 417-422 (1981).
Year 2018, Volume: 47 Issue: 4, 835 - 843, 01.08.2018

Abstract

References

  • Anderson, D. F., Badawi, A. The Total graph of a commutative ring, J. Algebra 320, 2706-2719, (2008).
  • Anderson, D. F., Badawi, A.The gereralized total graph of a commutative ring, J. Algebra App. 12 (2013), doi: 10.1142/S021949881250212X (2013).
  • Akbari, S. , Kiani, D., Mohammadi, F., Moradi, S. The total graph and regular graph of a commutative ring. J. Pure Appl. Algebra 213 (12) 2224-2228 (2009).
  • Akbari, S., Haydari, F. The regular graph of a commutative ring, Period Math. Hungar. 67 (2) 211-220 (2013).
  • Asir, T., Chelvam, T. On the total graph and its complement of a commutative ring, Comm. Algebra. 41, 38820-3835, dio:10.1080/009282.2012.678956 (2013).
  • Badawi, A. On the total graph of a ring and its related graphs: A Survey, M. Fontana et al. (eds.), Commutative Algebra: Recent Advances in Commutative Rings, Integer-Valued Polynomials, and Polynomial Functions, Springer, New York. doi: 10.1007/978-1-4939- 0925-4-3 (2014).
  • Chelvam, T., Asir, T. Domination in the total graph of a commutative ring, J. Combin. Math. Combin. Comput. 87, 147-158 (2013).
  • Eri\'{c}, A. Lj., Pucanovi\'{c}, Z. S. Some properties of the line graphs associated to the total graph of a commutative ring, Pure Appl. Math. J. 2 (2) 51-55 (2013).
  • Harary, F. Graph Theory. Publishing Co., Reading Mass (1972).
  • Nazzal K. Total graphs associated to a commutative ring, Palest. J. Math. 5 (Spec.1) (2016).
  • Koshy, T. Elementary number theory with applications. Harcourt Academic press Co.(2002).
  • Maimani, H. R., Wickham, C. Yassemi, S. Rings whose total graphs have genus at most one, Rocky Mountain J. Math. 42, 1421-1758 (2010).
  • Pucanovi, Z., Petrovi, Z. On the radius and the relation between the total graph of a commutative ring and its extensions, Pub. Ins. Math. (Beograd) (N.S.) 89,1-9 (2011).
  • Ramin, A. The total graph of a finite commutative ring. Turk J. Math, 37, 391-397 (2013).
  • Sander, T., Nazzal, K. Minimum flows in the total graph of a finite commutative ring, Trans. Comb. 3(3), 11-20 (2014).
  • Shekarriza, M. H. Shirdareh Haghighia, M. H., Sharifa, H. On the total graph of a finite commutative ring, Comm. Algebra. 40, 2798-2807 (2012).
  • Vince A. Locally homogeneous graphs from groups, J. Graph Theory, 4, 417-422 (1981).
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Manal Ghanem

Khalida Nazzal This is me

Publication Date August 1, 2018
Published in Issue Year 2018 Volume: 47 Issue: 4

Cite

APA Ghanem, M., & Nazzal, K. (2018). Some properties of the total graph and regular graph of a commutative ring. Hacettepe Journal of Mathematics and Statistics, 47(4), 835-843.
AMA Ghanem M, Nazzal K. Some properties of the total graph and regular graph of a commutative ring. Hacettepe Journal of Mathematics and Statistics. August 2018;47(4):835-843.
Chicago Ghanem, Manal, and Khalida Nazzal. “Some Properties of the Total Graph and Regular Graph of a Commutative Ring”. Hacettepe Journal of Mathematics and Statistics 47, no. 4 (August 2018): 835-43.
EndNote Ghanem M, Nazzal K (August 1, 2018) Some properties of the total graph and regular graph of a commutative ring. Hacettepe Journal of Mathematics and Statistics 47 4 835–843.
IEEE M. Ghanem and K. Nazzal, “Some properties of the total graph and regular graph of a commutative ring”, Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 4, pp. 835–843, 2018.
ISNAD Ghanem, Manal - Nazzal, Khalida. “Some Properties of the Total Graph and Regular Graph of a Commutative Ring”. Hacettepe Journal of Mathematics and Statistics 47/4 (August 2018), 835-843.
JAMA Ghanem M, Nazzal K. Some properties of the total graph and regular graph of a commutative ring. Hacettepe Journal of Mathematics and Statistics. 2018;47:835–843.
MLA Ghanem, Manal and Khalida Nazzal. “Some Properties of the Total Graph and Regular Graph of a Commutative Ring”. Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 4, 2018, pp. 835-43.
Vancouver Ghanem M, Nazzal K. Some properties of the total graph and regular graph of a commutative ring. Hacettepe Journal of Mathematics and Statistics. 2018;47(4):835-43.