Centralizers and the maximum size of the pairwise noncommuting elements in finite groups
Year 2017,
Volume: 46 Issue: 2, 193 - 198, 01.04.2017
Seyyed Majid Jafarian Amiri
Hojjat Rostami
Abstract
In this article, we determine the structure of all nonabelian groups $G$ such that $G$ has the minimum number of the element centralizers among
nonabelian groups of the same order. As an application of this result, we obtain the sharp lower bound for $\omega(G)$ in terms of the order of $G$ where $\omega(G)$ is the maximum size of a set of the pairwise noncommuting elements of $G$.
References
- A. Abdollahi, S. M. Jafarian. Amiri and A. M. Hassanabadi, Groups with specific number
of centralizers, Houston J. Math. 33(1) (2007), 43-57.
- A. Abdollahi, S. Akbari and H. R. Maimani, Non-commuting graph of a group, J. Algbera
298 (2) (2006), 468-492.
- A. Abdollahi, A. Azad, A. Mohamadi Hasanabadi and M. Zarrin, On the clique numbers of
non-commuting graphs of certain groups, Algebra Colloq, 17(4) (2010), 611-620.
- A. R. Ashra, On finite groups with a given number of centralizers, Algebra Colloq. 7(2)
(2000), 139-146.
- A. Ballester-Bolinches and J. Cossey, On non-commuting sets in finite soluble CC-groups,
Publ. Mat. 56 (2012), 467-471
- S. J. Baishya, On finite groups with specific number of centralizers, International Electronic
Journal of Algebra, 13(2013), 53-62.
- S. M. Belcastro and G. J. Sherman, Counting centralizers in finite groups, Math. Mag. 5
(1994), 111-114.
- Y. G. Berkovich and E. M. Zhmu'd, Characters of Finite Groups, Part 1, Transl. Math.
Monographs 172, Amer. Math. Soc., Providence. RI, 1998.
- R. Brown, Minimal covers of $S_n$ by abelian subgroups and maximal subsets of pairwise
noncommuting elements, J. Combin. Theory Ser. A 49 (1988), 294-307.
- R. Brown, Minimal covers of $S_n$ by abelian subgroups and maximal subsets of pairwise
noncommuting elements, II, J. Combin. Theory Ser. A 56 (1991), 285-289.
- E. A. Bertram, Some applications of graph theory to finite groups, Discrete Math. 44(1)
(1983), 31-43.
- A. M. Y. Chin, On noncommuting sets in an extraspecial p-group, J. Group Theory 8(2)
(2005), 189194.
- A. Y. M. Chin, On non-commuting sets in an extraspecial p-group, J. Group Theory, 8.2
(2005), 189-194.
- S. Dol, M. Herzog and E. Jabara, Finite groups whose noncentral commuting elements
have centralizers of equal size, Bull. Aust. Math Soc, 82 (2010), 293-304.
- I. M. Isaacs, Finite group theory, Grad. Stud. Math, vol. 92, Amer. Math. Soc, Providence,
RI, 2008.
- The GAP Group, GAP-Groups, Algoritms, and Programming, version 4.4.10, (2007), (http://www.gap-system.org).
- S. M. Jafarian Amiri and H. Madadi, On the maximum number of the pairwise noncom-
muting elements in a finite group, J. Algebra Appl, (2016), Vol. 16, No. 1 (2017) 1650197
(9 pages).
- S. M. Jafarian Amiri, H. Madadi and H. Rostami, On 9-centralizer groups, J. Algebra Appl,
Vol. 14, No. 1 (2015) 1550003 (13 pages).
- S. M. Jafarian Amiri and H. Rostami, Groups with a few nonabelian centralizers, Publ.
Math. Debrecen, 87 (3-4) (2015), 429-437.
- S. M. Jafarian Amiri, H. Madadi and H. Rostami, On F-groups with central factor of order
$p^4$, Math. Slovaca, Accepted.
- S. M. Jafarian Amiri, M. Amiri and H. Rostami, Finite groups determined by the number
of element centralizers, Comm. Alg., 45(9) (2017), 37923797.
- B. H. Neumann, A problem of Paul Erdos on groups, J. Austral. Math. Soc. Ser. A 21
(1976), 467-472.
- J. Pakianathan, S. Krishnan Shankar, Nilpotent numbers, Amer. Math. Monthly, (2000),
631-634.
- L. Pyber, The number of pairwise noncommuting elements and the index of the centre in a
finite group, J. Lond. Math. Soc. 35(2) (1987), 287-295.
- D. J. S. Robinson, A course in the theory of groups, Springer-Verlag New York, 1996.
- R. Schmidt, Zentralisatorverbande endlicher Gruppen, Rend. Sem. Mat. Univ. Padova 44
(1970), 97-131.
- M. Zarrin, Criteria for the solubility of finite groups by its centralizers, Arch. Math. 96
(2011), 225-226.
- M. Zarrin, On element centralizers in finite groups, Arch. Math. 93(2009), 497-503.
- M. Zarrin, On solubility of groups with finitely many centralizers, Bull. Iran. Math. Soc. 39
(2013), 517-521.
Year 2017,
Volume: 46 Issue: 2, 193 - 198, 01.04.2017
Seyyed Majid Jafarian Amiri
Hojjat Rostami
References
- A. Abdollahi, S. M. Jafarian. Amiri and A. M. Hassanabadi, Groups with specific number
of centralizers, Houston J. Math. 33(1) (2007), 43-57.
- A. Abdollahi, S. Akbari and H. R. Maimani, Non-commuting graph of a group, J. Algbera
298 (2) (2006), 468-492.
- A. Abdollahi, A. Azad, A. Mohamadi Hasanabadi and M. Zarrin, On the clique numbers of
non-commuting graphs of certain groups, Algebra Colloq, 17(4) (2010), 611-620.
- A. R. Ashra, On finite groups with a given number of centralizers, Algebra Colloq. 7(2)
(2000), 139-146.
- A. Ballester-Bolinches and J. Cossey, On non-commuting sets in finite soluble CC-groups,
Publ. Mat. 56 (2012), 467-471
- S. J. Baishya, On finite groups with specific number of centralizers, International Electronic
Journal of Algebra, 13(2013), 53-62.
- S. M. Belcastro and G. J. Sherman, Counting centralizers in finite groups, Math. Mag. 5
(1994), 111-114.
- Y. G. Berkovich and E. M. Zhmu'd, Characters of Finite Groups, Part 1, Transl. Math.
Monographs 172, Amer. Math. Soc., Providence. RI, 1998.
- R. Brown, Minimal covers of $S_n$ by abelian subgroups and maximal subsets of pairwise
noncommuting elements, J. Combin. Theory Ser. A 49 (1988), 294-307.
- R. Brown, Minimal covers of $S_n$ by abelian subgroups and maximal subsets of pairwise
noncommuting elements, II, J. Combin. Theory Ser. A 56 (1991), 285-289.
- E. A. Bertram, Some applications of graph theory to finite groups, Discrete Math. 44(1)
(1983), 31-43.
- A. M. Y. Chin, On noncommuting sets in an extraspecial p-group, J. Group Theory 8(2)
(2005), 189194.
- A. Y. M. Chin, On non-commuting sets in an extraspecial p-group, J. Group Theory, 8.2
(2005), 189-194.
- S. Dol, M. Herzog and E. Jabara, Finite groups whose noncentral commuting elements
have centralizers of equal size, Bull. Aust. Math Soc, 82 (2010), 293-304.
- I. M. Isaacs, Finite group theory, Grad. Stud. Math, vol. 92, Amer. Math. Soc, Providence,
RI, 2008.
- The GAP Group, GAP-Groups, Algoritms, and Programming, version 4.4.10, (2007), (http://www.gap-system.org).
- S. M. Jafarian Amiri and H. Madadi, On the maximum number of the pairwise noncom-
muting elements in a finite group, J. Algebra Appl, (2016), Vol. 16, No. 1 (2017) 1650197
(9 pages).
- S. M. Jafarian Amiri, H. Madadi and H. Rostami, On 9-centralizer groups, J. Algebra Appl,
Vol. 14, No. 1 (2015) 1550003 (13 pages).
- S. M. Jafarian Amiri and H. Rostami, Groups with a few nonabelian centralizers, Publ.
Math. Debrecen, 87 (3-4) (2015), 429-437.
- S. M. Jafarian Amiri, H. Madadi and H. Rostami, On F-groups with central factor of order
$p^4$, Math. Slovaca, Accepted.
- S. M. Jafarian Amiri, M. Amiri and H. Rostami, Finite groups determined by the number
of element centralizers, Comm. Alg., 45(9) (2017), 37923797.
- B. H. Neumann, A problem of Paul Erdos on groups, J. Austral. Math. Soc. Ser. A 21
(1976), 467-472.
- J. Pakianathan, S. Krishnan Shankar, Nilpotent numbers, Amer. Math. Monthly, (2000),
631-634.
- L. Pyber, The number of pairwise noncommuting elements and the index of the centre in a
finite group, J. Lond. Math. Soc. 35(2) (1987), 287-295.
- D. J. S. Robinson, A course in the theory of groups, Springer-Verlag New York, 1996.
- R. Schmidt, Zentralisatorverbande endlicher Gruppen, Rend. Sem. Mat. Univ. Padova 44
(1970), 97-131.
- M. Zarrin, Criteria for the solubility of finite groups by its centralizers, Arch. Math. 96
(2011), 225-226.
- M. Zarrin, On element centralizers in finite groups, Arch. Math. 93(2009), 497-503.
- M. Zarrin, On solubility of groups with finitely many centralizers, Bull. Iran. Math. Soc. 39
(2013), 517-521.