Research Article
BibTex RIS Cite

Centralizers and the maximum size of the pairwise noncommuting elements in finite groups

Year 2017, Volume: 46 Issue: 2, 193 - 198, 01.04.2017

Abstract

In this article, we determine the structure of all nonabelian groups $G$ such that $G$ has the minimum number of the element centralizers among
nonabelian groups of the same order. As an application of this result, we obtain the sharp lower bound for $\omega(G)$ in terms of the order of $G$ where $\omega(G)$ is the maximum size of a set of the pairwise noncommuting elements of $G$.

References

  • A. Abdollahi, S. M. Jafarian. Amiri and A. M. Hassanabadi, Groups with specific number of centralizers, Houston J. Math. 33(1) (2007), 43-57.
  • A. Abdollahi, S. Akbari and H. R. Maimani, Non-commuting graph of a group, J. Algbera 298 (2) (2006), 468-492.
  • A. Abdollahi, A. Azad, A. Mohamadi Hasanabadi and M. Zarrin, On the clique numbers of non-commuting graphs of certain groups, Algebra Colloq, 17(4) (2010), 611-620.
  • A. R. Ashra, On finite groups with a given number of centralizers, Algebra Colloq. 7(2) (2000), 139-146.
  • A. Ballester-Bolinches and J. Cossey, On non-commuting sets in finite soluble CC-groups, Publ. Mat. 56 (2012), 467-471
  • S. J. Baishya, On finite groups with specific number of centralizers, International Electronic Journal of Algebra, 13(2013), 53-62.
  • S. M. Belcastro and G. J. Sherman, Counting centralizers in finite groups, Math. Mag. 5 (1994), 111-114.
  • Y. G. Berkovich and E. M. Zhmu'd, Characters of Finite Groups, Part 1, Transl. Math. Monographs 172, Amer. Math. Soc., Providence. RI, 1998.
  • R. Brown, Minimal covers of $S_n$ by abelian subgroups and maximal subsets of pairwise noncommuting elements, J. Combin. Theory Ser. A 49 (1988), 294-307.
  • R. Brown, Minimal covers of $S_n$ by abelian subgroups and maximal subsets of pairwise noncommuting elements, II, J. Combin. Theory Ser. A 56 (1991), 285-289.
  • E. A. Bertram, Some applications of graph theory to finite groups, Discrete Math. 44(1) (1983), 31-43.
  • A. M. Y. Chin, On noncommuting sets in an extraspecial p-group, J. Group Theory 8(2) (2005), 189194.
  • A. Y. M. Chin, On non-commuting sets in an extraspecial p-group, J. Group Theory, 8.2 (2005), 189-194.
  • S. Dol, M. Herzog and E. Jabara, Finite groups whose noncentral commuting elements have centralizers of equal size, Bull. Aust. Math Soc, 82 (2010), 293-304.
  • I. M. Isaacs, Finite group theory, Grad. Stud. Math, vol. 92, Amer. Math. Soc, Providence, RI, 2008.
  • The GAP Group, GAP-Groups, Algoritms, and Programming, version 4.4.10, (2007), (http://www.gap-system.org).
  • S. M. Jafarian Amiri and H. Madadi, On the maximum number of the pairwise noncom- muting elements in a finite group, J. Algebra Appl, (2016), Vol. 16, No. 1 (2017) 1650197 (9 pages).
  • S. M. Jafarian Amiri, H. Madadi and H. Rostami, On 9-centralizer groups, J. Algebra Appl, Vol. 14, No. 1 (2015) 1550003 (13 pages).
  • S. M. Jafarian Amiri and H. Rostami, Groups with a few nonabelian centralizers, Publ. Math. Debrecen, 87 (3-4) (2015), 429-437.
  • S. M. Jafarian Amiri, H. Madadi and H. Rostami, On F-groups with central factor of order $p^4$, Math. Slovaca, Accepted.
  • S. M. Jafarian Amiri, M. Amiri and H. Rostami, Finite groups determined by the number of element centralizers, Comm. Alg., 45(9) (2017), 37923797.
  • B. H. Neumann, A problem of Paul Erdos on groups, J. Austral. Math. Soc. Ser. A 21 (1976), 467-472.
  • J. Pakianathan, S. Krishnan Shankar, Nilpotent numbers, Amer. Math. Monthly, (2000), 631-634.
  • L. Pyber, The number of pairwise noncommuting elements and the index of the centre in a finite group, J. Lond. Math. Soc. 35(2) (1987), 287-295.
  • D. J. S. Robinson, A course in the theory of groups, Springer-Verlag New York, 1996.
  • R. Schmidt, Zentralisatorverbande endlicher Gruppen, Rend. Sem. Mat. Univ. Padova 44 (1970), 97-131.
  • M. Zarrin, Criteria for the solubility of finite groups by its centralizers, Arch. Math. 96 (2011), 225-226.
  • M. Zarrin, On element centralizers in finite groups, Arch. Math. 93(2009), 497-503.
  • M. Zarrin, On solubility of groups with finitely many centralizers, Bull. Iran. Math. Soc. 39 (2013), 517-521.
Year 2017, Volume: 46 Issue: 2, 193 - 198, 01.04.2017

Abstract

References

  • A. Abdollahi, S. M. Jafarian. Amiri and A. M. Hassanabadi, Groups with specific number of centralizers, Houston J. Math. 33(1) (2007), 43-57.
  • A. Abdollahi, S. Akbari and H. R. Maimani, Non-commuting graph of a group, J. Algbera 298 (2) (2006), 468-492.
  • A. Abdollahi, A. Azad, A. Mohamadi Hasanabadi and M. Zarrin, On the clique numbers of non-commuting graphs of certain groups, Algebra Colloq, 17(4) (2010), 611-620.
  • A. R. Ashra, On finite groups with a given number of centralizers, Algebra Colloq. 7(2) (2000), 139-146.
  • A. Ballester-Bolinches and J. Cossey, On non-commuting sets in finite soluble CC-groups, Publ. Mat. 56 (2012), 467-471
  • S. J. Baishya, On finite groups with specific number of centralizers, International Electronic Journal of Algebra, 13(2013), 53-62.
  • S. M. Belcastro and G. J. Sherman, Counting centralizers in finite groups, Math. Mag. 5 (1994), 111-114.
  • Y. G. Berkovich and E. M. Zhmu'd, Characters of Finite Groups, Part 1, Transl. Math. Monographs 172, Amer. Math. Soc., Providence. RI, 1998.
  • R. Brown, Minimal covers of $S_n$ by abelian subgroups and maximal subsets of pairwise noncommuting elements, J. Combin. Theory Ser. A 49 (1988), 294-307.
  • R. Brown, Minimal covers of $S_n$ by abelian subgroups and maximal subsets of pairwise noncommuting elements, II, J. Combin. Theory Ser. A 56 (1991), 285-289.
  • E. A. Bertram, Some applications of graph theory to finite groups, Discrete Math. 44(1) (1983), 31-43.
  • A. M. Y. Chin, On noncommuting sets in an extraspecial p-group, J. Group Theory 8(2) (2005), 189194.
  • A. Y. M. Chin, On non-commuting sets in an extraspecial p-group, J. Group Theory, 8.2 (2005), 189-194.
  • S. Dol, M. Herzog and E. Jabara, Finite groups whose noncentral commuting elements have centralizers of equal size, Bull. Aust. Math Soc, 82 (2010), 293-304.
  • I. M. Isaacs, Finite group theory, Grad. Stud. Math, vol. 92, Amer. Math. Soc, Providence, RI, 2008.
  • The GAP Group, GAP-Groups, Algoritms, and Programming, version 4.4.10, (2007), (http://www.gap-system.org).
  • S. M. Jafarian Amiri and H. Madadi, On the maximum number of the pairwise noncom- muting elements in a finite group, J. Algebra Appl, (2016), Vol. 16, No. 1 (2017) 1650197 (9 pages).
  • S. M. Jafarian Amiri, H. Madadi and H. Rostami, On 9-centralizer groups, J. Algebra Appl, Vol. 14, No. 1 (2015) 1550003 (13 pages).
  • S. M. Jafarian Amiri and H. Rostami, Groups with a few nonabelian centralizers, Publ. Math. Debrecen, 87 (3-4) (2015), 429-437.
  • S. M. Jafarian Amiri, H. Madadi and H. Rostami, On F-groups with central factor of order $p^4$, Math. Slovaca, Accepted.
  • S. M. Jafarian Amiri, M. Amiri and H. Rostami, Finite groups determined by the number of element centralizers, Comm. Alg., 45(9) (2017), 37923797.
  • B. H. Neumann, A problem of Paul Erdos on groups, J. Austral. Math. Soc. Ser. A 21 (1976), 467-472.
  • J. Pakianathan, S. Krishnan Shankar, Nilpotent numbers, Amer. Math. Monthly, (2000), 631-634.
  • L. Pyber, The number of pairwise noncommuting elements and the index of the centre in a finite group, J. Lond. Math. Soc. 35(2) (1987), 287-295.
  • D. J. S. Robinson, A course in the theory of groups, Springer-Verlag New York, 1996.
  • R. Schmidt, Zentralisatorverbande endlicher Gruppen, Rend. Sem. Mat. Univ. Padova 44 (1970), 97-131.
  • M. Zarrin, Criteria for the solubility of finite groups by its centralizers, Arch. Math. 96 (2011), 225-226.
  • M. Zarrin, On element centralizers in finite groups, Arch. Math. 93(2009), 497-503.
  • M. Zarrin, On solubility of groups with finitely many centralizers, Bull. Iran. Math. Soc. 39 (2013), 517-521.
There are 29 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Seyyed Majid Jafarian Amiri This is me

Hojjat Rostami This is me

Publication Date April 1, 2017
Published in Issue Year 2017 Volume: 46 Issue: 2

Cite

APA Jafarian Amiri, S. M., & Rostami, H. (2017). Centralizers and the maximum size of the pairwise noncommuting elements in finite groups. Hacettepe Journal of Mathematics and Statistics, 46(2), 193-198.
AMA Jafarian Amiri SM, Rostami H. Centralizers and the maximum size of the pairwise noncommuting elements in finite groups. Hacettepe Journal of Mathematics and Statistics. April 2017;46(2):193-198.
Chicago Jafarian Amiri, Seyyed Majid, and Hojjat Rostami. “Centralizers and the Maximum Size of the Pairwise Noncommuting Elements in finite Groups”. Hacettepe Journal of Mathematics and Statistics 46, no. 2 (April 2017): 193-98.
EndNote Jafarian Amiri SM, Rostami H (April 1, 2017) Centralizers and the maximum size of the pairwise noncommuting elements in finite groups. Hacettepe Journal of Mathematics and Statistics 46 2 193–198.
IEEE S. M. Jafarian Amiri and H. Rostami, “Centralizers and the maximum size of the pairwise noncommuting elements in finite groups”, Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 2, pp. 193–198, 2017.
ISNAD Jafarian Amiri, Seyyed Majid - Rostami, Hojjat. “Centralizers and the Maximum Size of the Pairwise Noncommuting Elements in finite Groups”. Hacettepe Journal of Mathematics and Statistics 46/2 (April 2017), 193-198.
JAMA Jafarian Amiri SM, Rostami H. Centralizers and the maximum size of the pairwise noncommuting elements in finite groups. Hacettepe Journal of Mathematics and Statistics. 2017;46:193–198.
MLA Jafarian Amiri, Seyyed Majid and Hojjat Rostami. “Centralizers and the Maximum Size of the Pairwise Noncommuting Elements in finite Groups”. Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 2, 2017, pp. 193-8.
Vancouver Jafarian Amiri SM, Rostami H. Centralizers and the maximum size of the pairwise noncommuting elements in finite groups. Hacettepe Journal of Mathematics and Statistics. 2017;46(2):193-8.