Research Article
BibTex RIS Cite

Remainders of locally ƒ\v{C}ech-complete spaces and homogeneity

Year 2017, Volume: 46 Issue: 1, 1 - 8, 01.02.2017

Abstract

We study remainders of locally ƒƒ\v{C}ech-complete spaces. In particular, it is established that if $X$ is a locally ƒ\v{C}ƒech-complete non-ƒ\v{C}ƒech-complete space, then no remainder of $X$ is homogeneous (Theorem 3.1). We also show that if $Y$ is a remainder of a locally ƒƒ\v{C}ech-complete space $X$, and every $y\in Y$ is a $G_\delta$-point in $Y$, then the cardinality of $Y$ doesn't exceed $2^\omega$. Several other results are obtained.

References

  • A.V. Arhangel'skii, On a class of spaces containing all metric and all locally compact spaces, Mat. Sb. 67(109) (1965), 55-88. English translation: Amer. Math. Soc. Transl. 92 (1970), 1-39.
  • A.V. Arhangel'skii, Remainders of metrizable spaces and a generalization of Lindel\"{o}f - spaces, Fund. Mathematicae 215 (2011), 87-100.
  • A.V. Arhangel'skii, Remainders of metrizable and close to metrizable spaces, Fundamenta Mathematicae 220 (2013), 7181.
  • A.V. Arhangel'skii, A generalization of \v{C}ƒech-complete spaces and Lindel\"{o}f -spaces, Com- ment. Math. Universatis Carolinae 54:2 (2013), 121139.
  • A.V. Arhangel'skii and M.M. Choban, Some generalizations of the concept of a p-space, Topology and Appl. 158 (2011), 1381 - 1389.
  • E.K. van Douwen, F. Tall, and W. Weiss, Non-metrizable hereditarily Lindel\"{o}f spaces with point-countable bases from CH, Proc. Amer. Math. Soc. 64 (1977), 139-145.
  • R. Engelking, General Topology, PWN, Warszawa, 1977.
  • M. Henriksen and J.R. Isbell, Some properties of compactications, Duke Math. J. 25 (1958), 83-106.
  • K. Nagami, $\Sigma$-spaces, Fund. Mathematicae 61 (1969), 169-192.
  • S.J. Nedev, $o$-metrizable spaces, Trudy Mosk. Matem. O-va 24 (1971), 201-236.
Year 2017, Volume: 46 Issue: 1, 1 - 8, 01.02.2017

Abstract

References

  • A.V. Arhangel'skii, On a class of spaces containing all metric and all locally compact spaces, Mat. Sb. 67(109) (1965), 55-88. English translation: Amer. Math. Soc. Transl. 92 (1970), 1-39.
  • A.V. Arhangel'skii, Remainders of metrizable spaces and a generalization of Lindel\"{o}f - spaces, Fund. Mathematicae 215 (2011), 87-100.
  • A.V. Arhangel'skii, Remainders of metrizable and close to metrizable spaces, Fundamenta Mathematicae 220 (2013), 7181.
  • A.V. Arhangel'skii, A generalization of \v{C}ƒech-complete spaces and Lindel\"{o}f -spaces, Com- ment. Math. Universatis Carolinae 54:2 (2013), 121139.
  • A.V. Arhangel'skii and M.M. Choban, Some generalizations of the concept of a p-space, Topology and Appl. 158 (2011), 1381 - 1389.
  • E.K. van Douwen, F. Tall, and W. Weiss, Non-metrizable hereditarily Lindel\"{o}f spaces with point-countable bases from CH, Proc. Amer. Math. Soc. 64 (1977), 139-145.
  • R. Engelking, General Topology, PWN, Warszawa, 1977.
  • M. Henriksen and J.R. Isbell, Some properties of compactications, Duke Math. J. 25 (1958), 83-106.
  • K. Nagami, $\Sigma$-spaces, Fund. Mathematicae 61 (1969), 169-192.
  • S.J. Nedev, $o$-metrizable spaces, Trudy Mosk. Matem. O-va 24 (1971), 201-236.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

A.v. Arhangel'skii This is me

Publication Date February 1, 2017
Published in Issue Year 2017 Volume: 46 Issue: 1

Cite

APA Arhangel’skii, A. (2017). Remainders of locally ƒ\v{C}ech-complete spaces and homogeneity. Hacettepe Journal of Mathematics and Statistics, 46(1), 1-8.
AMA Arhangel’skii A. Remainders of locally ƒ\v{C}ech-complete spaces and homogeneity. Hacettepe Journal of Mathematics and Statistics. February 2017;46(1):1-8.
Chicago Arhangel’skii, A.v. “Remainders of Locally ƒ\v{C}ech-Complete Spaces and Homogeneity”. Hacettepe Journal of Mathematics and Statistics 46, no. 1 (February 2017): 1-8.
EndNote Arhangel’skii A (February 1, 2017) Remainders of locally ƒ\v{C}ech-complete spaces and homogeneity. Hacettepe Journal of Mathematics and Statistics 46 1 1–8.
IEEE A. Arhangel’skii, “Remainders of locally ƒ\v{C}ech-complete spaces and homogeneity”, Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 1, pp. 1–8, 2017.
ISNAD Arhangel’skii, A.v. “Remainders of Locally ƒ\v{C}ech-Complete Spaces and Homogeneity”. Hacettepe Journal of Mathematics and Statistics 46/1 (February 2017), 1-8.
JAMA Arhangel’skii A. Remainders of locally ƒ\v{C}ech-complete spaces and homogeneity. Hacettepe Journal of Mathematics and Statistics. 2017;46:1–8.
MLA Arhangel’skii, A.v. “Remainders of Locally ƒ\v{C}ech-Complete Spaces and Homogeneity”. Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 1, 2017, pp. 1-8.
Vancouver Arhangel’skii A. Remainders of locally ƒ\v{C}ech-complete spaces and homogeneity. Hacettepe Journal of Mathematics and Statistics. 2017;46(1):1-8.