Research Article
BibTex RIS Cite

A study on quasi-pseudometrics

Year 2017, Volume: 46 Issue: 1, 33 - 52, 01.02.2017

Abstract

We study some aspects of the space $QPM(X)$ of all quasi-pseudometrics on a set $X$ equipped with the extended $T_0$-quasi-metric $A_X(f,g)=\sup_{(x,y)\in X\times X}(f(x,y)-g(x,y))$ whenever $f,g\in QPM(X)$. We observe that this space is bicomplete and exhibit various closed
subspaces of $( QPM(X), \tau((A_X)^s))$.

In the second part of the paper, as a rough way to measure the asymmety of a quasi-pseudometric $f$ on a set $X$, we investigate some properties of the value $(A_X)^s(f,f^{-1}).

References

  • C.A. Agyingi, P. Haihambo and H.-P.A. Künzi, Tight extensions of T0-quasi-metric spaces, in: V. Brattka, H. Diener, D. Spreen (Eds.), Logic, Computation, Hierarchies, Festschrift in Honour of V.L. Selivanov's 60th Birthday, Ontos Verlag, De Gruyter Berlin, Boston, 2014, pp. 922.
  • C.A. Agyingi, P. Haihambo and H.-P.A. Künzi, Endpoints in T0-quasi-metric spaces: Part II, Abstract and Applied Analysis, Vol. 2013, Article ID 539573, 10 pages.
  • G. Berthiaume, On quasi-uniformities in hyperspaces, Proc. Amer. Math. Soc. 66 (1977), 335343.
  • M. Bukatin, R. Kopperman and S. Matthews, Some corollaries of the correspondence between partial metrics and multivalued equalities, Fuzzy Sets Systems 256 (2014), 57 72.
  • M.J. Campión, E. Induráin, G. Ochoa and O. Valero, Functional equations related to weighable quasi-metrics, Hacettepe J. Mat. Stat. 44 (4) (2015), 775787.
  • Ş. Cobzaş, Functional Analysis in Asymmetric Normed Spaces, Frontiers in Mathematics, Springer, Basel, 2012.
  • P. Fletcher and W.F. Lindgren, Quasi-uniform Spaces, Dekker, New York, 1982.
  • Y.U. Gaba and H.-P.A. Künzi, Splitting metrics by T0-quasi-metrics, Topology Appl. 193 (2015), 8496.
  • Y.U. Gaba and H.-P.A. Künzi, Partially ordered metric spaces produced by T0-quasimetrics, Topology Appl. 202 (2016), 366383.
  • J. Goubault-Larrecq, Non-Hausdorff Topology and Domain Theory, Selected Topics in Point-Set Topology, Cambridge University Press, Cambridge, 2013.
  • D. Gronau, A remark on Sincov's functional equation, Not. S. Afr. Math. Soc. 31 (2000), 1-8.
  • E. Kemajou, H.-P.A. Künzi and O.O. Otafudu, The Isbell-hull of a di-space, Topology Appl. 159 (2012), 24632475.
  • H.-P.A. Künzi, An introduction to quasi-uniform spaces, Beyond Topology, Contemp. Math. 486 (2009), 239304.
  • H.-P.A. Künzi and C. Makitu Kivuvu, A double completion for an arbitrary T0-quasimetric space, J. Logic Algebraic Programming 76 (2008), 251269.
  • H.-P.A. Künzi and S. Romaguera, Weightable quasi-uniformities, Acta Math. Hungar. 136 (1-2), (2012), 107128.
  • H.-P.A. Künzi and C. Ryser, The Bourbaki quasi-uniformity, Topology Proceedings 20 (1995), 161183.
  • H.-P.A. Künzi and M. Sanchis, The Katetov construction modified for a T0-quasi-metric space, Topology Appl. 159 (2012), 711720.
  • H.-P.A. Künzi and V. Vajner, Weighted quasi-metrics, Ann. New York Acad. Sci. 728 (1994), 6477.
  • H.-P. A. Künzi and F. Yıldız, Convexity structures in T0-quasi-metric spaces, Topology Appl. 200 (2016), 218.
  • L. Nel, Continuity Theory, Springer, Switzerland, 2016.
  • F. Plastria, Asymmetric distances, semidirected networks and majority in Fermat-Weber problems, Ann. Oper. Res. (2009) 167: 121155.
  • I.V. Protasov, Coronas of balleans, Topology Appl. 149 (2005), 149160.
  • T. ’Salát, J. Tóth and L. Zsilinszky, Metric space of metrics defined on a given set, Real Anal Exch., 18 no. 1 (19921993), 225231.
  • T. S’alát, J. Tóth and L. Zsilinszky, On the structure of the space of metrics defined on a given set, Real Anal. Exch. 19, no. 1 (19931994), 321327.
Year 2017, Volume: 46 Issue: 1, 33 - 52, 01.02.2017

Abstract

References

  • C.A. Agyingi, P. Haihambo and H.-P.A. Künzi, Tight extensions of T0-quasi-metric spaces, in: V. Brattka, H. Diener, D. Spreen (Eds.), Logic, Computation, Hierarchies, Festschrift in Honour of V.L. Selivanov's 60th Birthday, Ontos Verlag, De Gruyter Berlin, Boston, 2014, pp. 922.
  • C.A. Agyingi, P. Haihambo and H.-P.A. Künzi, Endpoints in T0-quasi-metric spaces: Part II, Abstract and Applied Analysis, Vol. 2013, Article ID 539573, 10 pages.
  • G. Berthiaume, On quasi-uniformities in hyperspaces, Proc. Amer. Math. Soc. 66 (1977), 335343.
  • M. Bukatin, R. Kopperman and S. Matthews, Some corollaries of the correspondence between partial metrics and multivalued equalities, Fuzzy Sets Systems 256 (2014), 57 72.
  • M.J. Campión, E. Induráin, G. Ochoa and O. Valero, Functional equations related to weighable quasi-metrics, Hacettepe J. Mat. Stat. 44 (4) (2015), 775787.
  • Ş. Cobzaş, Functional Analysis in Asymmetric Normed Spaces, Frontiers in Mathematics, Springer, Basel, 2012.
  • P. Fletcher and W.F. Lindgren, Quasi-uniform Spaces, Dekker, New York, 1982.
  • Y.U. Gaba and H.-P.A. Künzi, Splitting metrics by T0-quasi-metrics, Topology Appl. 193 (2015), 8496.
  • Y.U. Gaba and H.-P.A. Künzi, Partially ordered metric spaces produced by T0-quasimetrics, Topology Appl. 202 (2016), 366383.
  • J. Goubault-Larrecq, Non-Hausdorff Topology and Domain Theory, Selected Topics in Point-Set Topology, Cambridge University Press, Cambridge, 2013.
  • D. Gronau, A remark on Sincov's functional equation, Not. S. Afr. Math. Soc. 31 (2000), 1-8.
  • E. Kemajou, H.-P.A. Künzi and O.O. Otafudu, The Isbell-hull of a di-space, Topology Appl. 159 (2012), 24632475.
  • H.-P.A. Künzi, An introduction to quasi-uniform spaces, Beyond Topology, Contemp. Math. 486 (2009), 239304.
  • H.-P.A. Künzi and C. Makitu Kivuvu, A double completion for an arbitrary T0-quasimetric space, J. Logic Algebraic Programming 76 (2008), 251269.
  • H.-P.A. Künzi and S. Romaguera, Weightable quasi-uniformities, Acta Math. Hungar. 136 (1-2), (2012), 107128.
  • H.-P.A. Künzi and C. Ryser, The Bourbaki quasi-uniformity, Topology Proceedings 20 (1995), 161183.
  • H.-P.A. Künzi and M. Sanchis, The Katetov construction modified for a T0-quasi-metric space, Topology Appl. 159 (2012), 711720.
  • H.-P.A. Künzi and V. Vajner, Weighted quasi-metrics, Ann. New York Acad. Sci. 728 (1994), 6477.
  • H.-P. A. Künzi and F. Yıldız, Convexity structures in T0-quasi-metric spaces, Topology Appl. 200 (2016), 218.
  • L. Nel, Continuity Theory, Springer, Switzerland, 2016.
  • F. Plastria, Asymmetric distances, semidirected networks and majority in Fermat-Weber problems, Ann. Oper. Res. (2009) 167: 121155.
  • I.V. Protasov, Coronas of balleans, Topology Appl. 149 (2005), 149160.
  • T. ’Salát, J. Tóth and L. Zsilinszky, Metric space of metrics defined on a given set, Real Anal Exch., 18 no. 1 (19921993), 225231.
  • T. S’alát, J. Tóth and L. Zsilinszky, On the structure of the space of metrics defined on a given set, Real Anal. Exch. 19, no. 1 (19931994), 321327.
There are 24 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Natasha Demetriou This is me

Hans-peter A. Künzi

Publication Date February 1, 2017
Published in Issue Year 2017 Volume: 46 Issue: 1

Cite

APA Demetriou, N., & Künzi, H.-p. A. (2017). A study on quasi-pseudometrics. Hacettepe Journal of Mathematics and Statistics, 46(1), 33-52.
AMA Demetriou N, Künzi HpA. A study on quasi-pseudometrics. Hacettepe Journal of Mathematics and Statistics. February 2017;46(1):33-52.
Chicago Demetriou, Natasha, and Hans-peter A. Künzi. “A Study on Quasi-Pseudometrics”. Hacettepe Journal of Mathematics and Statistics 46, no. 1 (February 2017): 33-52.
EndNote Demetriou N, Künzi H-pA (February 1, 2017) A study on quasi-pseudometrics. Hacettepe Journal of Mathematics and Statistics 46 1 33–52.
IEEE N. Demetriou and H.-p. A. Künzi, “A study on quasi-pseudometrics”, Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 1, pp. 33–52, 2017.
ISNAD Demetriou, Natasha - Künzi, Hans-peter A. “A Study on Quasi-Pseudometrics”. Hacettepe Journal of Mathematics and Statistics 46/1 (February 2017), 33-52.
JAMA Demetriou N, Künzi H-pA. A study on quasi-pseudometrics. Hacettepe Journal of Mathematics and Statistics. 2017;46:33–52.
MLA Demetriou, Natasha and Hans-peter A. Künzi. “A Study on Quasi-Pseudometrics”. Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 1, 2017, pp. 33-52.
Vancouver Demetriou N, Künzi H-pA. A study on quasi-pseudometrics. Hacettepe Journal of Mathematics and Statistics. 2017;46(1):33-52.