Research Article
BibTex RIS Cite

Averaged modulus of smoothness and two-sided monotone approximation in Orlicz spaces

Year 2018, Volume: 47 Issue: 5, 1108 - 1119, 16.10.2018

Abstract

The paper deals with basic properties of averaged modulus of smoothness in Orlicz spaces $L^*_\varphi$. Some direct and inverse two-sided approximation problems in $L^*_\varphi$ are proved. In the last section, some inequalities concerning monotone two sided approximation by trigonometric polynomials in $L^*_\varphi$ are considered.

References

  • Akgün, R. Inequalities for one sided approximation in Orlicz spaces, Hacet. J. Math. Stat. 40 (2), 231-240, 2011.
  • Akgün, R., Approximating polynomials for functions of weighted Smirnov-Orlicz spaces,J. Funct. Spaces Appl. 41, Article ID 982360, 2012.
  • Akgün, R., Some inequalities of trigonometric approximation in weighted Orlicz spaces, Math. Slovaca 66 (1), 217-234, 2016.
  • Akgün, R. and Israfilov, D. M. Simultaneous and converse approximation theorems in weighted Orlicz spaces, Bull. Belg. Math. Soc. Simon Stevin 17 (1), 13-28, 2010.
  • Akgün, R. and Israfilov, D. M. Approximation in weighted Orlicz spaces, Math. Slovaca, 61 (4), 601-618, 2011.
  • Akgün, R. and Koç, H. Approximation by interpolating polynomials in weighted symmetric Smirnov spaces, Hacet. J. Math. Stat. 41 (5), 643-649, 2012.
  • Akgün, R. and Koç, H. Simultaneous approximation of functions in Orlicz spaces with Muckenhoupt weights, Complex Var. Elliptic Equ. 61 (8), 1107-1115, 2016.
  • Babenko, V. F. and Ligun, A. A. The order of the best one-sided approximation by polyno- mials and splines in the $L_p$-metric, Math. Notes 19 (3), 194-198, 1976.
  • Cohen, E. On the degree of approximation of a function by the partial sums of its Fourier series, Trans. Amer. Math. Soc. 235, 35-74, 1978.
  • Ganelius, T. On one-sided approximation by trigonometric polynomials, Math. Scand., 4, 247-256, 1956.
  • Israfilov, D. M. and Guven, A. Approximation by trigonometric polynomials in weighted Orlicz spaces. Studia Math. 174 (2), 147-168, 2006.
  • Jafarov, S. Z., Approximation by Fejér sums of Fourier trigonometric series in weighted Orlicz spaces. Hacet. J. Math. Stat. 42 (3), 259-268, 2013.
  • Jafarov, S. Z., Approximation by linear summability means in Orlicz spaces. Novi Sad J. Math. 44 (2), 161-172, 2014.
  • Jafarov, S. Z., Approximation of functions by de la Vallée-Poussin sums in weighted Orlicz spaces. Arab. J. Sci. Eng. (Springer) 5 (3), 125-137, 2016.
  • Jafarov, S. Z., Approximation of periodic functions by Zygmund means in Orlicz spaces. J. Class. Anal. 9 (1) , 43-52, 2016.
  • Koç, H. Simultaneous approximation by polynomials in Orlicz spaces generated by quasi- convex Young functions, Kuwait J. Sci. 43 (4), 18-31, 2016.
  • Kokilašvili, V. M. An inverse theorem of the constructive theory of functions in Orlicz spaces, (Russian) Soobšč. Akad. Nauk Gruzin. SSR 37 (1965), 263-270.
  • Krasnosel'ski , M. A. and Rutickii, Y. B. Convex functions and Orlicz spaces, Translated from the First Russian edition by Leo F. Boron, Popko Noordhoff Ltd., Groningen.1961.
  • Lorentz, G. G. and Golitschek, M. V. and Makovoz, Y. Constructive approximation: Ad- vanced problems, Springer-Verlag, 1996.
  • Ponomarenko, V. G. Approximation of periodic functions in an Orlicz space, (Russian) Sibirsk. Mat. Zh. 7, 1337-1346, 1966.
  • Ramazanov, A.-R. K. On approximation by polynomials and rational functions in Orlicz spaces, Anal. Math. 10 (2), 117-132, 1984.
  • Sendov, B. and Popov,V. A. The averaged moduli of smoothness, Pure Appl. Math.,(New York), Wiley, Chichester, 1988.
  • Shadrin, A. Yu. Monotone approximation of functions by trigonometric polynomials, Mat. Zametki, 34 (3), 375-386, 1983.
  • Shadrin, A.Yu., Orders of one sided approximations of functions in $L_p$-metric, Anal. Math. 12, 175-184, 1986.
  • Shadrin, A.Yu., Jackson type theorems for monotone approximation of functions by trigono- metric polynomials, Mat. Zametki, 42 (6), 790-809, 1987.
  • Tsyganok, I. I. A generalization of a theorem of Jackson, Mat. Sbornik 71 (113), 257-260, 1966.
Year 2018, Volume: 47 Issue: 5, 1108 - 1119, 16.10.2018

Abstract

References

  • Akgün, R. Inequalities for one sided approximation in Orlicz spaces, Hacet. J. Math. Stat. 40 (2), 231-240, 2011.
  • Akgün, R., Approximating polynomials for functions of weighted Smirnov-Orlicz spaces,J. Funct. Spaces Appl. 41, Article ID 982360, 2012.
  • Akgün, R., Some inequalities of trigonometric approximation in weighted Orlicz spaces, Math. Slovaca 66 (1), 217-234, 2016.
  • Akgün, R. and Israfilov, D. M. Simultaneous and converse approximation theorems in weighted Orlicz spaces, Bull. Belg. Math. Soc. Simon Stevin 17 (1), 13-28, 2010.
  • Akgün, R. and Israfilov, D. M. Approximation in weighted Orlicz spaces, Math. Slovaca, 61 (4), 601-618, 2011.
  • Akgün, R. and Koç, H. Approximation by interpolating polynomials in weighted symmetric Smirnov spaces, Hacet. J. Math. Stat. 41 (5), 643-649, 2012.
  • Akgün, R. and Koç, H. Simultaneous approximation of functions in Orlicz spaces with Muckenhoupt weights, Complex Var. Elliptic Equ. 61 (8), 1107-1115, 2016.
  • Babenko, V. F. and Ligun, A. A. The order of the best one-sided approximation by polyno- mials and splines in the $L_p$-metric, Math. Notes 19 (3), 194-198, 1976.
  • Cohen, E. On the degree of approximation of a function by the partial sums of its Fourier series, Trans. Amer. Math. Soc. 235, 35-74, 1978.
  • Ganelius, T. On one-sided approximation by trigonometric polynomials, Math. Scand., 4, 247-256, 1956.
  • Israfilov, D. M. and Guven, A. Approximation by trigonometric polynomials in weighted Orlicz spaces. Studia Math. 174 (2), 147-168, 2006.
  • Jafarov, S. Z., Approximation by Fejér sums of Fourier trigonometric series in weighted Orlicz spaces. Hacet. J. Math. Stat. 42 (3), 259-268, 2013.
  • Jafarov, S. Z., Approximation by linear summability means in Orlicz spaces. Novi Sad J. Math. 44 (2), 161-172, 2014.
  • Jafarov, S. Z., Approximation of functions by de la Vallée-Poussin sums in weighted Orlicz spaces. Arab. J. Sci. Eng. (Springer) 5 (3), 125-137, 2016.
  • Jafarov, S. Z., Approximation of periodic functions by Zygmund means in Orlicz spaces. J. Class. Anal. 9 (1) , 43-52, 2016.
  • Koç, H. Simultaneous approximation by polynomials in Orlicz spaces generated by quasi- convex Young functions, Kuwait J. Sci. 43 (4), 18-31, 2016.
  • Kokilašvili, V. M. An inverse theorem of the constructive theory of functions in Orlicz spaces, (Russian) Soobšč. Akad. Nauk Gruzin. SSR 37 (1965), 263-270.
  • Krasnosel'ski , M. A. and Rutickii, Y. B. Convex functions and Orlicz spaces, Translated from the First Russian edition by Leo F. Boron, Popko Noordhoff Ltd., Groningen.1961.
  • Lorentz, G. G. and Golitschek, M. V. and Makovoz, Y. Constructive approximation: Ad- vanced problems, Springer-Verlag, 1996.
  • Ponomarenko, V. G. Approximation of periodic functions in an Orlicz space, (Russian) Sibirsk. Mat. Zh. 7, 1337-1346, 1966.
  • Ramazanov, A.-R. K. On approximation by polynomials and rational functions in Orlicz spaces, Anal. Math. 10 (2), 117-132, 1984.
  • Sendov, B. and Popov,V. A. The averaged moduli of smoothness, Pure Appl. Math.,(New York), Wiley, Chichester, 1988.
  • Shadrin, A. Yu. Monotone approximation of functions by trigonometric polynomials, Mat. Zametki, 34 (3), 375-386, 1983.
  • Shadrin, A.Yu., Orders of one sided approximations of functions in $L_p$-metric, Anal. Math. 12, 175-184, 1986.
  • Shadrin, A.Yu., Jackson type theorems for monotone approximation of functions by trigono- metric polynomials, Mat. Zametki, 42 (6), 790-809, 1987.
  • Tsyganok, I. I. A generalization of a theorem of Jackson, Mat. Sbornik 71 (113), 257-260, 1966.
There are 26 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Hüseyin Koç

Ramazan Akgün

Publication Date October 16, 2018
Published in Issue Year 2018 Volume: 47 Issue: 5

Cite

APA Koç, H., & Akgün, R. (2018). Averaged modulus of smoothness and two-sided monotone approximation in Orlicz spaces. Hacettepe Journal of Mathematics and Statistics, 47(5), 1108-1119.
AMA Koç H, Akgün R. Averaged modulus of smoothness and two-sided monotone approximation in Orlicz spaces. Hacettepe Journal of Mathematics and Statistics. October 2018;47(5):1108-1119.
Chicago Koç, Hüseyin, and Ramazan Akgün. “Averaged Modulus of Smoothness and Two-Sided Monotone Approximation in Orlicz Spaces”. Hacettepe Journal of Mathematics and Statistics 47, no. 5 (October 2018): 1108-19.
EndNote Koç H, Akgün R (October 1, 2018) Averaged modulus of smoothness and two-sided monotone approximation in Orlicz spaces. Hacettepe Journal of Mathematics and Statistics 47 5 1108–1119.
IEEE H. Koç and R. Akgün, “Averaged modulus of smoothness and two-sided monotone approximation in Orlicz spaces”, Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 5, pp. 1108–1119, 2018.
ISNAD Koç, Hüseyin - Akgün, Ramazan. “Averaged Modulus of Smoothness and Two-Sided Monotone Approximation in Orlicz Spaces”. Hacettepe Journal of Mathematics and Statistics 47/5 (October 2018), 1108-1119.
JAMA Koç H, Akgün R. Averaged modulus of smoothness and two-sided monotone approximation in Orlicz spaces. Hacettepe Journal of Mathematics and Statistics. 2018;47:1108–1119.
MLA Koç, Hüseyin and Ramazan Akgün. “Averaged Modulus of Smoothness and Two-Sided Monotone Approximation in Orlicz Spaces”. Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 5, 2018, pp. 1108-19.
Vancouver Koç H, Akgün R. Averaged modulus of smoothness and two-sided monotone approximation in Orlicz spaces. Hacettepe Journal of Mathematics and Statistics. 2018;47(5):1108-19.